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Abstract

Following the approach of Bryant [R. Bryant, Some remarks on G2-structures. e-print: math.DG/0305124] we study the intrinsic
torsion of a SU(3)-manifold deriving a number of formulae for the Ricci and the scalar curvature in terms of torsion forms. As a
consequence we prove that in some special cases the Einstein condition forces the vanishing of the intrinsic torsion.
c© 2006 Elsevier B.V. All rights reserved.
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0. Introduction

In the last few years geometric and physical motivations led many mathematicians to focus on the geometry of
SU(3)- and G2-structures on 6- and 7-dimensional manifolds and on the interplay between them (see e.g. [2–5,10–14,
20] and the references therein). New directions in this field were suggested by the work of Hitchin [22]. The present
work is inspired by [10], where the author computes the Ricci curvature of a G2-structure in terms of the derivatives
of the defining 3-form.

In this paper we study the intrinsic torsion of SU(3)-manifolds relating it to the curvature of the induced metric.
A SU(3)-structure on a 6-dimensional manifold is determined by a pair (κ,Ω), where κ is an almost symplectic
structure and Ω is a normalized κ-positive 3-form (see Section 2 for the definition). In fact such a pair induces a
natural κ-calibrated almost complex structure J on M such that the complex valued form

ε = Ω + i JΩ

is of type (3,0) with respect to J . The intrinsic torsion of a SU(3)-structure can be described in terms of the
derivatives of the defining forms (κ,Ω) by considering a natural decomposition of Λ3 M and Λ4 M in irreducible
SU(3)-submodules. Namely the forms dκ , dΩ and d∗Ω decompose as

dκ = −
3
2
σ0Ω +

3
2
π0 JΩ + ν1 ∧ κ + ν3;
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dΩ = π0κ
2
+ π1 ∧ Ω − π2 ∧ κ;

dJΩ = σ0κ
2
+ Jπ1 ∧ Ω − σ2 ∧ κ,

where π0, σ0, π1, ν1, σ2, ν3 lie in different SU(3)-modules. The forms {π0, σ0, π1, ν1, σ2, ν3} are called the torsion
forms and they vanish if and only if the SU(3)-structure is integrable, i.e. if and only if the induced metric is Ricci-
flat so that (M, κ,Ω) is a Calabi–Yau threefold. Moreover special non-integrable SU(3)-structures, e.g. generalized
Calabi–Yau structures1 and half-flat structures, can be characterized in terms of torsion forms. In the spirit of [10] a
principal bundle approach allows us to write down the Ricci tensor and the scalar curvature of a SU(3)-manifold in
terms of torsion forms. As a direct consequence of these formulae we get that the scalar curvature of a generalized
Calabi–Yau manifold is non-positive and it vanishes identically if and only if the SU(3)-structure is integrable. We
also prove that the metric of a special generalized Calabi–Yau manifold M is Einstein if and only if M is a genuine
Calabi–Yau manifold.
The paper is organized as follows. In Section 1 general SU(n)-structures are introduced. In Section 2, which is the
algebraic core of the paper, we specialize to the 6-dimensional case studying the algebra underlying SU(3)-structures.
In particular we exhibit an explicit expression for the complex structure induced by (κ,Ω). In this section we define
the torsion forms and characterize various special SU(3)-structures in terms of these forms. The work in Section 3
follows the steps of [10] where the formula for the Ricci curvature of a G2-structure is derived. We exploit the
algebraic formulae obtained in Section 2 in order to come to the explicit formula for the Ricci tensor (3.13). Here
the final computation was carried out with the aid of MAPLE while a representation-theoretic argument justifies the
final formulae. In Section 4 we collect the above mentioned consequences of formula (3.13) in the special case of
generalized Calabi–Yau manifolds. Section 5 is devoted to the explicit computations performed on a non-integrable
special generalized Calabi–Yau nilmanifold which illustrate the role of the torsion forms in this case. In the Appendix
some technical proofs are provided.
NOTATION. Given a manifold M , we denote by Λr M the space of smooth r -forms on M and we set Λ•M :=⊕n

r=1 Λr M . When an almost complex structure J on M is given, Λp,q
J M denotes the space of complex forms on

M of type (p, q) with respect to J .
The symplectic group, i.e. the group of automorphisms of R2n preserving the standard symplectic form κn =∑n

i=1 dx2i−1 ∧ dx2i , will be denoted by Sp(n,R).
Furthermore when a coframe {α1, . . . , αn} is given we will denote the r -form αi1 ∧ · · · ∧ αir by αi1...ir .
In the indicial expressions the symbol for sum over repeated indices is omitted.

1. SU(n)-structures

1.1. U(n)-structures

Let (M, κ) be a 2n-dimensional almost symplectic manifold. The symplectic Hodge operator

F : Λr M → Λ2n−r M,

is defined by means of the relation

α ∧ Fβ = κ(α, β)
κn

n!
,

where α, β ∈ Λr M . It is easy to check that F2
= I . An almost complex structure on M is an endomorphism J of T M

such that J 2
= −I . Note that the endomorphism induced by J on Λp M (again denoted by J ) satisfies the identity

J 2
= (−1)p I . An almost complex structure is said to be κ-tamed if

κx (v, Jxv) > 0

1 We remark that the notion of generalized Calabi–Yau structure that we consider is the one adopted in [18] which is different from that given by
Hitchin in [21].
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for every x ∈ M and non-zero vector v ∈ Tx M . If further κ is preserved by J , the almost complex structure is said to
be κ-calibrated. In this case we denote by gJ the Riemannian metric

gJ (X, Y ) := κ(X, JY ), (1.1)

for every vector field X, Y on M . We immediately get that J is an isometry of gJ , i.e. gJ is J -Hermitian. We denote
by Cκ(M) the space of κ-calibrated almost complex structures on M . The elements of Cκ(M) can be viewed as smooth
global sections of a fiber bundle whose fibers are isomorphic to the homogeneous space

Sp(n,R)/U(n)

(see e.g. [6]). Since the latter is topologically a (n + n2)-dimensional cell, given any almost symplectic form κ , there
are always plenty of κ-calibrated almost complex structures. Furthermore the fact that Cκ(M) is contractible makes
it possible to define the first Chern class c1(M, κ) of the almost symplectic manifold (M, κ) as c1(M, J ), where
J ∈ Cκ(M).

Given J ∈ Cκ(M) the complexified exterior algebra Λ•M ⊗ C is Z+-bigraded with respect to the type as

Λ•M ⊗ C =

2n⊕
r=0

⊕
p+q=r

Λp,q
J M.

The metric gJ together with the orientation given by κ defines also the classical Hodge operator, that in this setting is
a C-linear map ∗ : Λp,q

J M → Λn−q,n−p
J M , such that

α ∧ ∗β = gJ (α, β)
κn

n!
,

for all α, β ∈ Λp,q
J M . It is well known that ∗ commutes with J and that their composition equals the C-linear

extension of the symplectic Hodge operator:

∗J = J∗ = F.

Since we have

d : Λp,q
J M → Λp+2,q−1

J M ⊕ Λp+1,q
J M ⊕ Λp,q+1

J M ⊕ Λp−1,q+2
J M,

the exterior differential operator accordingly splits as

d = AJ + ∂J + ∂̄J + ĀJ .

It is well known that an almost complex structure is integrable if and only if ĀJ = 0.

1.2. SU(n)-structures

Let M be a 2n-dimensional manifold and L(M) be the GL(2n,R)-principal bundle of linear frames. A SU(n)-
structure on M is a SU(n)-reduction of L(M). Since SU(n) is the group of the unitary transformation of Cn preserving
the standard complex volume form, a SU(n)-structure on M is determined by the choice of the following data:

• an almost complex structure J on T M ;
• a J -Hermitian metric g;
• a complex (n, 0)-form ε of constant norm 2

n
2 .

Alternatively these data can be replaced by

• an almost symplectic structure κ;
• a κ-calibrated almost complex structure J ;

• a complex (n, 0)-form ε, satisfying ε ∧ ε = cn
κn

n!
, with cn = (−1)

n(n+1)
2 (2i)n ;
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where κ and g are related by (1.1). Denote by ∇ the Levi-Civita connection induced by g on T M . We will say that a
SU(n)-structure is integrable if the restricted holonomy group Hol0(T M,∇) is isomorphic to a subgroup of SU(n).
Since the holonomy is determined by the parallel tensors, a SU(n)-structure is integrable if the corresponding triple
(κ, J, ε) satisfies

∇κ = 0, ∇ J = 0, ∇ε = 0.

In this case (M, κ, J, ε) is said to be a Calabi–Yau manifold.

Remark 1.1. Let (M, κ, J, ε) be a SU(n)-manifold and assume

dκ = 0, dε = 0,

then (M, κ, J, ε) is a Calabi–Yau manifold. In fact if α ∈ Λ1,0
J M we have

0 = d(ε ∧ α) = (−1)nε ∧ dα = (−1)nε ∧ AJα,

and hence AJ = 0, which implies that J is integrable. Furthermore, since κ is closed, the pair (κ, J ) defines a Kähler
structure on M ; hence we get

∇κ = 0, ∇ J = 0.

Finally the equation ε ∧ ε = cn
κn

n!
forces ε to be parallel.

Several non-integrable SU(n)-structures are worth considering for both geometrical and physical reasons (the
survey article [1] is a good reference for recent results on non-integrable geometries).
A notion of generalized Calabi–Yau manifold has been introduced by de Bartolomeis and Tomassini; in [18] they give
the following definition:

Definition 1.2. A generalized Calabi–Yau (GCY) structure on M is a SU(n)-structure (κ, J, ε) satisfying the
following conditions:

1. dκ = 0 (i.e. (M, κ) is a symplectic manifold);
2. ∂ J ε = 0.

We emphasize again that a different generalization of Calabi–Yau structures has been considered by Hitchin in a
broader context in [21].

Remark 1.3. For an almost Kähler manifold (i.e. a symplectic manifold endowed with a calibrated almost complex
structure) it is natural to consider on T M the canonical Hermitian connection ∇̃, whose covariant derivative is given
by

∇̃X = ∇X −
1
2

J∇X J.

It is characterized by the following properties

∇̃κ = 0, ∇̃ J = 0, T ∇̃
=

1
2

NJ ,

where NJ is the Nijenhuis tensor associated with J and T ∇̃ is the torsion of ∇̃. This connection coincides with ∇ if
and only if the pair (κ, J ) is a Kähler structure on M (i.e. if and only if J is integrable).

If (M, κ, J, ε) is a symplectic SU(3)-manifold, then the constraint ε ∧ ε = cn
κn

n!
implies

∂ J ε = 0 ⇐⇒ ∇̃ε = 0,

(see [18]). Hence GCY manifolds can be defined as SU(n)-manifolds with the volume form ε satisfying ∇̃ε = 0. It
follows that in the GCY case the holonomy group Hol0(T M, ∇̃) is isomorphic to a subgroup of SU(n).
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2. SU(3)-structures

In this section we specialize to the case n = 3 and study the linear algebra underlying SU(3)-structures. Fix a
real 6-dimensional symplectic vector space (V, κ). Let us denote by Sp(V, κ) the group of automorphisms of the pair
(V, κ), i.e. Sp(V, κ) = {φ ∈ GL(V ) : φ∗κ = κ}. The space of skew-symmetric 3-forms on V splits into the following
two irreducible Sp(V, κ)-modules

Λ3
0V ∗

= {φ ∈ Λ3V ∗
| φ ∧ κ = 0},

Λ3
6V ∗

= {α ∧ κ | α ∈ V ∗
}.

The 3-forms lying in the space Λ3
0V ∗ are sometimes called in the literature effective 3-forms (see e.g. [7]). Let us

consider the action Θ of the Lie group G = Sp(V, κ)× R∗
+ on the space Λ3

0V ∗ given by

Θ(φ, t) · α := t (φ−1)∗α,

where R∗
+ denotes the group of positive real numbers. It is known that this action has an open orbit O whose isotropy

is locally isomorphic to SU(3) (see e.g. [7,24]). We will call κ-positive 3-forms the elements of the orbit O. Since
the stabilizer at Ω ∈ O is locally isomorphic to SU(3), each κ-positive 3-form singles out a κ-calibrated complex
structure on V which we are able to explicitly write down. In fact we have:

Proposition 2.1. The endomorphism PΩ of V ∗ given by

PΩ : α 7−→ −
1
2
F(Ω ∧ F(Ω ∧ α))

has the following properties

1. P2
Ω is a negative multiple of the identity;

2. κ(PΩ α, β) = −κ(α, PΩβ), for every α, β ∈ Λ1V ∗.

Proof. 1. First we observe that PΩ is a SU(3)-invariant endomorphism of V ∗, since it is built using only Ω and F.
Since SU(3) acts irreducibly on V ∗, the real version of Schur’s lemma assures that PΩ = aI + bJ , where J is a
complex structure on V ∗ and a, b are real numbers.
Now we claim that P2

Ω has a negative eigenvalue. From this claim the conclusion follows. Suppose indeed that there
exists v 6= 0 such that P2

Ωv = λv, with λ < 0. Then

2abJv = (λ2
− a2

+ b2)v.

If ab 6= 0, then J would have a real eigenvalue and this is impossible. On the other hand if b = 0 then P2
Ω = a2 I ,

which is a contradiction with the claim. Hence PΩ = bJ . To prove the claim we must use an explicit frame
{e1, . . . , e6

} of V ∗ in which κ and Ω takes the standard form and perform the computation, e.g., of P2
Ωe1.

2. We have

κ(PΩα, β)
κ3

6
= −κ(β, PΩα)

κ3

6
=

1
2
β ∧ Ω ∧ F(Ω ∧ α)

= −
1
2
κ(β ∧ Ω , α ∧ Ω)

κ3

6
= −

1
2
κ(α ∧ Ω , β ∧ Ω)

κ3

6

= κ(PΩβ, α)
κ3

6
= −κ(α, PΩβ)

κ3

6
. �

The following is immediate:

Corollary 2.2. The endomorphism JΩκ-dual to (det PΩ )
−

1
6 PΩ is a κ-calibrated almost complex structure on V .

Furthermore the form

ε = Ω + iJΩΩ
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is a complex form of type (3, 0) with respect to JΩ . If further det(PΩ ) = 1, then

ε ∧ ε = i
4
3
κ3. (2.1)

We have also this characterization of κ-positive 3-forms.

Lemma 2.3. These facts are equivalent

1. Ω is a κ-positive 3-form;
2. the map FΩ : Λ1V ∗

3 α 7→ α ∧ Ω is injective and κ is negative definite on the image of FΩ .

Remark 2.4. Note that since κ is JΩ -invariant, also JΩΩ is effective, i.e. κ ∧ JΩΩ = 0.

Definition 2.5. A κ-positive 3-form is said to be normalized if det(PΩ ) = 1.

From now on we will drop the subscript Ω from JΩ when no confusion arises.
In order to make the exposition more concrete we identify V with R6; we denote by {e1, . . . , e6} the standard basis
and by {e1, . . . , e6

} the dual one.
Fix on V the standard symplectic form

κ0 = e12
+ e34

+ e56

and the standard complex volume form

ε0 = (e1
+ ie2) ∧ (e3

+ ie4) ∧ (e5
+ ie6).

The real part of ε0

Ω0 = e135
− e146

− e245
− e236

is a normalized κ0-positive 3-form. The complex structure associated with Ω0 is exactly the standard κ0-calibrated
complex structure J0 defined by

J0(e1) = e2, J0(e3) = e4, J0(e5) = e6.

We will denote by g0 the scalar product associated with (κ0, J0). Note that g0 is simply the standard Euclidean inner
product.

Using the standard forms κ0 and Ω0 by straightforward computations we can obtain some useful identities
concerning κ-positive 3-forms.

Lemma 2.6. Let (V, κ) be a symplectic vector space and Ω a normalized κ-positive 3-form; then we have

1. FΩ = −Ω (hence also JΩ = ∗Ω );
2. Ω ∧ JΩ =

2
3κ

3.

2.1. Decomposition of the exterior algebra

Let (V, κ) be an arbitrary 6-dimensional symplectic vector space and Ω a normalized κ-positive 3-form. Let us
consider the natural action of SU(3) on the exterior algebra Λ•V ∗. Obviously SU(3) acts irreducibly on V ∗ and Λ5V ∗,
while Λ2V ∗ and Λ3V ∗ decompose as follows:

Λ2V ∗
= Λ2

1V ∗
⊕ Λ2

6V ∗
⊕ Λ2

8V ∗,

Λ3V ∗
= Λ3

ReV ∗
⊕ Λ3

ImV ∗
⊕ Λ3

6V ∗
⊕ Λ3

12V ∗,
(2.2)

where we set

• Λ2
1V ∗

= Rκ ,
• Λ2

6V ∗
= {F(α ∧ Ω) | α ∈ Λ1V ∗

} = {ϕ ∈ Λ2V ∗
| Jϕ = −ϕ},

• Λ2
8V ∗

= {ϕ ∈ Λ2V ∗
| ϕ ∧ Ω = 0 and Fϕ = −ϕ ∧ κ} = {ϕ ∈ Λ2V ∗

| Jϕ = ϕ, ϕ ∧ κ2
= 0},
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and

• Λ3
ReV ∗

= RΩ ,
• Λ3

ImV ∗
= RJΩ = {γ ∈ Λ3V ∗

| γ ∧ κ = 0, γ ∧ Ω = cκ3, c ∈ R},
• Λ3

6V ∗
= {α ∧ κ | α ∈ Λ1V ∗

} = {γ ∈ Λ3V ∗
| Fγ = γ },

• Λ3
12V ∗

= {γ ∈ Λ3V ∗
| γ ∧ κ = 0, γ ∧ Ω = 0, γ ∧ JΩ = 0}.

Remark 2.7. Now we emphasize some relations which will be useful:

1. If ϕ ∈ Λ2
6V ∗

⊕ Λ2
8V ∗, then Fϕ = −ϕ ∧ κ .

2. If γ ∈ Λ3
ReV ∗

⊕ Λ3
ImV ∗

⊕ Λ3
12V ∗, then Fγ = −γ and γ ∧ κ = 0.

3. If α is an arbitrary 1-form, then J (α ∧ Ω) = −α ∧ Ω , and consequently from the definition of J it follows that

JΩ ∧ F(Ω ∧ α) = −2Fα.

4. If β ∈ Λ2
8V ∗ then

∗(β ∧ β) ∧ κ2
= β ∧ β ∧ ∗κ2

= 2β ∧ β ∧ κ

= −2β ∧ Fβ = −2|β|
2 κ

3

6
,

so that

∗(κ2
∧ ∗(β ∧ β)) = −2|β|

2. (2.3)

We can obtain the decomposition of Λ4V ∗ using the duality given by the symplectic star operator.
Moreover we define the projections

E1 : Λ2V ∗
→ Λ2

8V ∗,

E2 : Λ3V ∗
→ Λ3

12V ∗

by

E1(α) =
1
2
(α + Jα)−

1
18

∗ ((∗(α + Jα)+ (α + Jα) ∧ κ) ∧ κ)κ, (2.4)

E2(β) = β −
1
2

∗ (Jβ ∧ κ) ∧ κ −
1
4

∗ (β ∧ JΩ)Ω −
1
4

∗ (Ω ∧ β)JΩ . (2.5)

Note that E2 commutes with ∗ since the latter is an automorphism of Λ3
12V ∗. The same is true for J (and hence

also for F).

2.2. The ε-identities

As done by Bryant in the G2 case we introduce the following ε-notation, which will be useful in the sequel.

Ω0 =
1
6
εi jk ei jk, ∗Ω0 =

1
6
εi jk ei jk, κ0 =

1
2
κi j ei j .

We will use the following identities, whose proof is straightforward:

εi pqκpq = 0;

κi pκpj = −δi j ;

εi j pκpr = εi jr ;

εi j pκpr = −εi jr ;

εi pqε j pq = −4κi j ;

εi pqε j pq = 4δi j = εi pqε j pq;

εi j pεklp = −κikδ jl + κ jkδil + κilδ jk − κ jlδik;

εi j pεklp = −κikκ jl + κilκ jk + δikδ jl − δ jkδil = εi jkεi pq .

(2.6)
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These equations will be called ε-identities. As a first application of these formulae we can decompose the Lie algebra
so(6) as follows. Consider the real representation of complex matrices induced by J0

ρ : gl(3,C) → gl(6,R),

where ρ(A) is the block matrix (Bi j )i, j=1,2,3, with Bi j =

(
Re ai j Im ai j

−Im ai j Re ai j

)
. Thus a matrix A = (ai j ) lies in su(3) if

and only if

εi jka jk = 0 and κ jka jk = 0.

So we have the decomposition

so(6) = su(3)⊕ [R]1 ⊕ [R6
]2,

where

([a]1)i j = aκi j , ([v]2)i j = εi j pvp.

2.3. Decomposition of symmetric 2-tensors

In order to express the Ricci tensor in terms of skew-symmetric forms we must establish the correspondence which
we are going to describe. The 21-dimensional space of the symmetric covariant 2-tensor on V splits into irreducible
su(3)-modules as follows:

S2V ∗
= Rg0 ⊕ S2

+ ⊕ S2
−,

where

S2
+ = {h ∈ S2V ∗

: J0h = h, trg0 h = 0},

S2
− = {h ∈ S2V ∗

: J0h = −h}.

We will denote by S2
0 the direct sum S2

+ ⊕ S2
−.

The maps

ι : S2
+ −→ Λ2

8V ∗,

γ : S2
− −→ Λ3

12V ∗

defined by

ι(hi j ei e j ) = hi pκpj ei j ,

γ (hi j ei e j ) = hi pεpjkei jk

are isomorphisms of su(3)-representations.

2.4. SU(3)-structures on manifolds

Let M be a 6-dimensional manifold. A SU(3)-structure on M is determined by the choice of:

• a non-degenerate 2-form κ ,
• a normalized κ-positive 3-form Ω (i.e. Ω [x] is κ[x]-positive and normalized at every x in M).

In fact, as we have seen, Ω determines a κ-calibrated almost complex structure J such that ε = Ω + iJΩ is of type
(3, 0) and satisfies Eq. (2.1). We refer to ε as to the complex volume of (κ,Ω). In the sequel the induced scalar product
will be denoted by g or alternatively by 〈, 〉 and the associated Hodge operator by ∗.
Note that the SU(3)-structure determined by (κ,Ω) is integrable if and only if

dκ = 0, dΩ = d∗Ω = 0. (2.7)
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In fact, since JΩ = ∗Ω , Eq. (2.7) are equivalent to

dκ = 0, dε = 0.

Hence, since ε ∧ ε = i 4
3 κ

3, Remark 1.1 implies

∇κ = 0, ∇ J = 0, ∇ε = 0 ⇐⇒ dκ = 0, dε = 0.

2.5. Torsion forms

Let (M, κ,Ω) be a SU(3)-manifold. According with (2.2) the space of r -forms splits into su(3)-modules as follows:

Λ2 M = Λ2
1 M ⊕ Λ2

6 M ⊕ Λ2
8 M,

Λ3 M = Λ3
Re M ⊕ Λ3

Im M ⊕ Λ3
6 M ⊕ Λ3

12 M,

Λ4 M = Λ4
1 M ⊕ Λ4

6 M ⊕ Λ4
8 M,

where the meaning of the symbols is obvious. Consequently the derivatives of the structure forms decompose as

dκ = ν0Ω + α0 JΩ + ν1 ∧ κ + ν3,

dΩ = π0κ
2
+ π1 ∧ Ω − π2 ∧ κ,

dJΩ = σ0κ
2
+ σ1 ∧ Ω − σ2 ∧ κ,

(2.8)

where ν0, α0, π0, σ0 ∈ C∞(M,R), ν1, π1, σ1 ∈ Λ1 M , π2, σ2 ∈ Λ2
8 M and ν3 ∈ Λ3

12 M .
The following equations are derived from a G2 formula which was obtained in [9].

Lemma 2.8. With the notation introduced above

JΩ ∧ (∗dJΩ)− (∗dΩ) ∧ Ω = 0. (2.9)

Proof. See the Appendix. �

Now we are able to prove the following

Theorem 2.9. The following relations hold:

1. π0 =
2
3α0,

2. σ0 = −
2
3ν0,

3. σ1 = Jπ1.

Proof. 1. From the relation Ω ∧ κ = 0 it follows that

0 = d(Ω ∧ κ) = dΩ ∧ κ − Ω ∧ dκ
= π0κ

3
− π2 ∧ κ2

− α0Ω ∧ JΩ − Ω ∧ ν3

=

(
π0 −

2
3
α0

)
κ3,

where we have used that π2 ∧ κ2
= 0, Ω ∧ ν3 = 0.

2. Analogous to 1 starting from κ ∧ JΩ = 0.
3. This formula is a consequence of formula (2.9) together with the definition of J . We have

0 = (∗dΩ) ∧ Ω − JΩ ∧ ∗dJΩ
= ∗(π1 ∧ Ω) ∧ Ω − JΩ ∧ ∗(σ1 ∧ Ω)
= −J (F(π1 ∧ Ω) ∧ JΩ)− J (Ω ∧ F(σ1 ∧ Ω))
= J (JΩ ∧ F(Ω ∧ π1))+ J (Ω ∧ F(Ω ∧ σ1)).

Applying the definition of J and Remark 2.7 we get

J (−2Fπ1)− J (2JFσ1) = −2JFπ1 + 2Fσ1 = 0,
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i.e.

σ1 = Jπ1. �

Hence we can rewrite (2.8) as:

dκ = −
3
2
σ0Ω +

3
2
π0 JΩ + ν1 ∧ κ + ν3;

dΩ = π0κ
2
+ π1 ∧ Ω − π2 ∧ κ;

dJΩ = σ0κ
2
+ Jπ1 ∧ Ω − σ2 ∧ κ.

Definition 2.10. The forms {π0, σ0, π1, ν1, σ2, ν3} are called the torsion forms of the SU(3)-structure.

A SU(3)-structure is integrable if and only if all of the torsion forms vanish identically.
Several interesting special SU(3)-structures can be described in terms of torsion forms.

1. 6-dimensional GCY structures. Let (M, κ,Ω) be a 6-dimensional GCY manifold. The equation dκ = 0 implies

π0 = σ0 = 0, ν1 = 0, ν3 = 0.

Therefore dΩ and dJΩ reduce to

dΩ = π1 ∧ Ω − π2 ∧ κ,

dJΩ = Jπ1 ∧ Ω − σ2 ∧ κ.

Since the complex volume form ε associated with (κ,Ω) is of type (3, 0), ∂ J ε is the (3, 1)-part (and hence the J
anti-invariant part) of dε. Thus we have

∂ J ε =
1
2
(dε − Jdε).

Thus

∂ J ε =
1
2
(dε − Jdε)

=
1
2
(dΩ + idJΩ − JdΩ − iJdJΩ)

=
1
2
{dΩ − JdΩ + i(dJΩ − JdJΩ)}

=
1
2
{π1 ∧ Ω − J (π1 ∧ Ω)+ i(Jπ1 ∧ Ω − J (Jπ1 ∧ Ω))}

= π1 ∧ Ω + i Jπ1 ∧ Ω .

Hence by Lemma 2.3 the equation ∂ J ε = 0 is equivalent to π1 = 0. It follows that 6-dimensional GCY structures
can be defined as SU(3)-structures satisfying

π0 = σ0 = 0, ν1 = π1 = 0, ν3 = 0.

2. Special generalized Calabi–Yau structure. These structures were introduced and studied first by P. de Bartolomeis
in [16].

Definition 2.11. Let M be a 6-dimensional manifold. A special generalized Calabi–Yau structure (SGCY) on M
is a SU(3)-structure such that the defining forms κ , Ω are closed, i.e.

dκ = 0, dΩ = 0.

Special generalized Calabi–Yau manifolds can be considered as a subclass of generalized Calabi–Yau manifold,
in fact it is immediately verified that in this case the complex volume form ε associated with (κ,Ω) satisfies the
condition 2 of Definition 1.2 (see [18]). SGCY manifolds are taken into consideration also in [8,15,25].
Such a structure can be characterized by

π0 = σ0 = 0, ν1 = π1 = 0, π2 = 0, ν3 = 0.

3. Half-flat structure. Half-flat manifolds have a central role in the evolution theory developed by Hitchin in [22] and
can be used to construct non-compact examples of G2-manifolds.
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Definition 2.12. A SU(3)-structure (κ,Ω) is said to be half-flat if the structure forms satisfy the equations

d(κ ∧ κ) = 0, dΩ = 0.

Let (κ,Ω) be a half-flat structure. By the hypothesis dΩ = 0 we get

πi = 0, i = 0, 1, 2;

then

dκ = −
3
2
σ0Ω + ν1 ∧ κ + ν3.

On the other hand the hypothesis d(κ ∧ κ) = 0 implies

0 = dκ ∧ κ = −
3
2
σ0Ω ∧ κ + ν1 ∧ κ2

+ ν3 ∧ κ = ν1 ∧ κ2,

which forces ν1 to vanish, since the exterior multiplication by κ2 is an isomorphism on Λ1 M . Therefore half-flat
structures can be described as SU(3)-structures satisfying

πi = 0, i = 0, 1, 2, ν1 = 0.

2.6. Some SU(3) representation theory

Every irreducible representation ρ of the simple Lie group SU(3) can be labeled with a pair of integers (p, q) that
represent the highest weight of ρ with respect to a fixed base of the root system of a fixed maximal torus of SU(3). We
will denote ρ by λp,q . Nevertheless in the sequel we need to deal with real representation of SU(3), so (like in [23])
we will define the irreducible real representations Vp,q (p 6= q) and Vp,p by

Vp,q ⊗R C = λp,q ⊕ λq,p,

Vp,p ⊗R C = λp,p.

Keeping this fact in mind, we can use the complex representation theory to decompose a given real SU(3)-
representation into irreducible real SU(3)-modules. As is well known (see [10]) the polynomial pointwise invariants
of order k are polynomials in a canonically defined section of the vector bundle

Q×ρ1×···×ρk (V1(su(3))⊕ · · · ⊕ Vk(su(3))),

where Q is the SU(3)-reduction and V j (su(3)) is the SU(3)-representation uniquely defined by

(gl(6,R)/su(3))⊗ S j (R6) = V j (su(3))⊕ (R6
⊗ S j+1(R6)).

For the first-order invariants we have

V1(su(3)) = so(6)/su(3)⊗ R6

so that

V1(su(3)) = 2V0,0 ⊕ 2(R6)∗ ⊕ 2Λ2
8 ⊕ Λ3

12

which matches with the degree and types of our torsion forms. Rather standard calculation in su(3)-representation
theory allows us to decompose also the 252-dimensional representation V2(su(3)) into su(3)-irreducible submodules

V2(su(3)) = 3V0,0 ⊕ 4V1,0 ⊕ 5V1,1 ⊕ 3V2,1 ⊕ 4V2,0 ⊕ V3,0 ⊕ V2,2.

3. Riemannian invariants of SU(3)-structures

3.1. The Levi-Civita connection

Fix a SU(3)-reduction Q of the linear frame bundle L(M), given by the pair (κ,Ω). Q is a subbundle of the
principal SO(6)-bundle p : F → M of the normal frames of the metric g associated with the pair (κ,Ω). Consider on
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the bundle F the tautological R6-valued 1-form ω defined by ω[u](v) = u(p∗[u]v) for every u ∈ F and v ∈ TuF . On
F we have also the Levi-Civita connection 1-form ψ taking values in so(6). Using the canonical basis {e1, . . . , e6} of
R6 we will regard ω as a vector of R-valued 1-forms on F

ω = ω1e1 + · · · + ω6e6

and ψ as a skew-symmetric matrix of 1-forms, i.e. ψ = (ψi j ). With this notation the first structure equation relating
ω and ψ

dω = −ψ ∧ ω, (3.1)

becomes dωi = −ψi j ∧ ω j . Note that Eq. (3.1) simply means that ψ is torsion-free.
The curvature of ψ is by definition the so(6)-valued 2-form Ψ = dψ + ψ ∧ ψ . In index notation

Ψi j = dψi j + ψik ∧ ψk j =
1
2

Ri jklωk ∧ ωl .

We consider the pull-backs of ψ and ω to Q and denote them by the same symbols for the sake of brevity. The
intrinsic torsion of the SU(3)-structure measures the failing of ψ to take values in su(3). More precisely, according to
the splitting so(6) = su(3)⊕ [R]1 ⊕ [R6

]2, we decompose ψ as follows

ψ = θ + [µ]1 + [τ ]2.

Thus θ is a connection 1-form on Q which in general is not torsion-free.
As before we shall regard τ as a vector of 1-forms τ = τi ei . Furthermore we can write

τi = Ti jω j and µ = Miωi , (3.2)

where Ti j and Mi are smooth functions. The fact that ψ is torsion-free implies

dωi = −θi j ∧ ω j − εi jkτk ∧ ω j − κi jµ ∧ ω j . (3.3)

3.2. The curvature in index notation

In order to decompose the curvature 2-form we give the following

Lemma 3.1. These identities hold:

1. θ ∧ [µ]1 + [µ]1 ∧ θ = 0;
2. [τ ]2 ∧ [µ]1 − [µ]1 ∧ [τ ]2 = 0;
3. θ ∧ [τ ]2 + [τ ]2 ∧ θ = [θ ∧ τ ]2;
4. [τ ]2 ∧ [µ]1 + [[µ]1 ∧ τ ]2 = 0.

Proof. The proof is a straightforward application of ε-identities (2.6). To see how things work, we prove the first one.
Since θ takes values in su(3) we have

εpklθkl = εklpθkl = 0.

So

εi j pεklpθkl = 0

for every i, j = 1, . . . , 6. Then applying the ε-identities (2.6) we get

0 = εi j pεklpθkl

= (−κikδ jl + κ jkδil + κilδ jk − κ jlδik)θkl

= 2κ jkθki − 2κikθk j ,

i.e.

κ jkθki = κikθk j .
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Consequently

θik ∧ κk jµ+ κikµ ∧ θk j = 0,

i.e.

θ ∧ [µ]1 + [µ]1 ∧ θ = 0. �

Now we can introduce the following quantities

Dθ = dθ + θ ∧ θ + [τ ]2 ∧ [τ ]2 −
2
3
[κi jτi ∧ τ j ]1, (3.4)

Dτ = dτ + θ ∧ τ − 2[µ]1 ∧ τ, (3.5)

Dµ = dµ+
2
3
κi jτi ∧ τ j . (3.6)

With this definition Dθ takes values in su(3). Moreover by Lemma 3.1 we get

Ψ = d(θ + [τ ]2 + [µ]1)+ (θ + [τ ]2 + [µ]1) ∧ (θ + [τ ]2 + [µ]1)

= Dθ + [Dτ ]2 + [Dµ]1.

Using the ω-frame we shall write

Dθi j =
1
2

Si jklωk ∧ ωl , (3.7)

Dτi =
1
2

Ti jkω j ∧ ωk, (3.8)

Dµ =
1
2

Nklωk ∧ ωl . (3.9)

By the definition of the curvature form we have

Ri jkl = Si jkl + εi j pTpkl + κi j Nkl .

In this notation the first Bianchi identity

Ψ ∧ ω = 0,

has the indicial expression

Si jkl + Sil jk + Sikl j + εi j pTpkl + εilpTpjk + εikpTpl j + κi j Nkl + κil N jk + κik Nl j = 0 (3.10)

Let Rici j = Rikk j and s = Rickk be respectively the Ricci tensor and the scalar curvature of (M, g). Starting from
Eq. (3.10) a long, but straightforward computation gives the following

Theorem 3.2. In the previous notation we have

Rici j = 2εi pq Tpq j − 3κi p Npj ,

s = 2εkpq Tpqk − 3κkp Npk .

3.3. Ricci tensor in terms of torsion forms

Denote by π the projection π : Q → M . In terms of the ω-frame the pull-backs of the structure forms take their
standard expression, i.e.

π∗(Ω) =
1
6
εi jkωi ∧ ω j ∧ ωk,

π∗(JΩ) =
1
6
εi jkωi ∧ ω j ∧ ωk,

π∗(κ) =
1
2
κi jωi ∧ ω j .
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Taking into account formula (3.3) and ε-identities, we immediately get

Proposition 3.3. The derivatives of the structure forms are

dπ∗(Ω) =
1
2
(−κ jaκkb + κ jbκka)τb ∧ ωa ∧ ω j ∧ ωk − 3µ ∧ π∗(JΩ),

dπ∗(JΩ) = (τ j ∧ ω j ) ∧ π∗(κ)− 3µ ∧ π∗(Ω),
dπ∗(κ) = εlr jτl ∧ ωr ∧ ω j .

Now we can decompose the derivatives of the structure forms: a direct computation gives the following formulae

π∗(π0) =
2
3

Ti i ,

π∗(π1) = εi jk Ti jωk + 3κik Miωk,

π∗(π2) =
1
2
εsraεai j Tsrωi ∧ ω j − 2κiaTajωi ∧ ω j +

2
3

Ti iπ
∗(κ),

π∗(σ0) =
2
3
κi j Ti j ,

π∗(σ2) =
1
2
εrsaεai j Trsωi ∧ ω j − 2Ti jωi ∧ ω j +

2
3
κi j Ti jπ

∗(κ),

π∗(ν1) = εi jk Ti jωk,

π∗(ν3) = εai j Takωi ∧ ω j ∧ ωk +
1
6
κabTabεi jkωi ∧ ω j ∧ ωk

−
1
6

Taaεi jkωi ∧ ω j ∧ ωk −
1
2

Tabεabiκ jkωi ∧ ω j ∧ ωk .

Warning: From now on we identify the torsion forms with their pull-backs to the principal SU(3)-bundle Q.
Combining the previous formulae and (3.3) we are able to prove the following (see the Appendix)

Theorem 3.4. In terms of torsion forms the scalar curvature of the metric induced by the SU(3)-structure is expressed
as

s =
15
2
π2

0 +
15
2
σ 2

0 + 2d∗π1 + 2d∗ν1 − |ν1|
2
−

1
2
|σ2|

2
−

1
2
|π2|

2
−

1
2
|ν3|

2
+ 4〈π1, ν1〉. (3.11)

Here we collect some consequences of formula (3.11) when the SU(3)-structure has special features.
1. GCY structure. The condition ∂ J ε = 0 reads as π1 = 0 (see Section 2.5), so that, taking into account dκ = 0,

s = −
1
2
|σ2|

2
−

1
2
|π2|

2.

2. SGCY structure. This is a special case of the previous one with the extra condition π2 = 0. The scalar curvature
takes the form

s = −
1
2
|σ2|

2. (3.12)

3. Half-flat structure. The condition dκ ∧ κ = 0 reads in terms of torsion forms as ν1 = 0. Thus in the half-flat case
the scalar curvature takes the form

s =
15
2
σ 2

0 −
1
2
|σ2|

2
−

1
2
|ν3|

2.

Corollary 3.5. The scalar curvature of a 6-dimensional generalized Calabi–Yau manifold is everywhere non-positive
and it vanishes identically if and only if the SU(3)-structure has no torsion.

Now we write the Ricci curvature Rici j = 2εi pq Tpq j − 3κi p Npj in terms of the torsion forms using the operators ι
and γ defined in Section 2.3.

Theorem 3.6. If M is endowed with the SU(3)-structure (κ,Ω) with torsion forms given by (2.8), then the traceless
part of the Ricci tensor of the induced metric is
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Ric0 = ι−1(E1(φ1))+ γ−1(E2(φ2)), (3.13)

where

φ1 = − ∗ (ν1 ∧ Jν3)+
1
4

∗ (π2 ∧ π2)+
1
4

∗ (σ2 ∧ σ2)

+ dJπ1 +
1
2

d∗ν3 +
1
2

d∗(ν1 ∧ κ)−
1
4

d ∗ (π0Ω)+
1
4

d∗(σ0Ω),

φ2 = −2σ0ν3 − 4σ2 ∧ ν1 − 2Jdπ2 − 2Fdσ2 − 4d ∗ (ν1 ∧ ∗Ω)+ −2d ∗ (Jπ1 ∧ Ω)+ 2π0 Jν3

− 2Jd ∗ (π1 ∧ Ω)− 4π2 ∧ Jπ1 + 4ν1 ∧ ∗(Jπ1 ∧ Ω)− 2Jν1 ∧ ∗(ν1 ∧ Ω)−
1
2

Q(ν3, ν3),

E1 and E2 are the maps defined by Eqs. (2.4) and (2.5) and Q is the bilinear form Q : Λ3
12 M × Λ3

12 M → Λ3 M
defined by

Q(α, β) = εi jl ιe j ιeiα ∧ ιelβ,

where {e1, . . . , e6} is a unitary frame and ι denotes the contraction of forms.

Remark 3.7. The formulae for the scalar curvature and for the traceless part of the Ricci tensor are justified by
representation theory. Both s and Ric0 must be linear combinations of linear terms in V2(su(3)) and quadratic terms
in V1(su(3)). For the scalar curvature the terms must take values in the V0,0 copies of V1 and V2, while for the Ricci
curvature the terms must take values in Λ2

8 and Λ3
12 copies of V1 and V2 (for S2

0 = Λ2
8 ⊕ Λ3

12). So we have to consider:

S2(V1(su(3))) = 11V0,0 ⊕ 13V1,0 ⊕ 17V1,1 ⊕ 12V2,0 ⊕ 3V3,0 ⊕ 4V2,2 ⊕ 9V2,1 ⊕ 2V3,1.

The 11 copies of V0,0 are generated by

• π2
0 , σ

2
0 , π0σ0;

• |π1|
2, |ν1|

2, 〈π1, ν1〉 and another bilinear expression in π1, ν1 which does not appear in formula (3.11);
• |σ2|

2, |π2|
2, and a bilinear expression in π2, σ2 which does not appear;

• |ν3|
2.

The 17 copies of V1,1 are generated by the projections of

• π0π2, π0σ2, σ0σ2, σ0π2;
• four bilinear expressions in π1 and ν1 which do not appear in formula (3.13);
• ∗π1 ∧ Jν3 and three more bilinear expressions in π1 and ν3;
• ∗(π2 ∧ π2), ∗(σ2 ∧ σ2) and two more bilinear expressions in π2 and σ2;
• a bilinear form in ν3.

The 12 copies of V2,0 are generated by the projections of

• π0ν3, σ0ν3;
• ν1 ∧ ∗(Jπ1 ∧ Ω), Jν1 ∧ ∗(ν1 ∧ Ω) and another two bilinear expressions in π1, ν1;
• σ2 ∧ ν1, π2 ∧ ν1, σ2 ∧ π1, π2 ∧ π1;
• two bilinear expressions in σ2, ν3 and π2, ν3;
• Q(ν3, ν3).

An analogous discussion can be given for the second-order expressions after considering the splitting:

V2(su(3)) = 3V0,0 ⊕ 4V1,0 ⊕ 5V1,1 ⊕ 3V2,1 ⊕ 4V2,0 ⊕ V3,0 ⊕ V2,2.

4. The Ricci tensor in the GCY case

Suppose now that the pair (κ,Ω) gives a generalized Calabi–Yau structure on M . In this case all the torsion is
encoded by π2 and σ2; in fact dΩ and dJΩ reduce to

dΩ = −π2 ∧ κ, dJΩ = −σ2 ∧ κ.
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Therefore we get

0 = d2Ω = −dπ2 ∧ κ,

0 = d2 JΩ = −dσ2 ∧ κ,

i.e. dπ2 and dσ2 are effective 3-forms. Since π2 ∈ Λ2
8 M

0 = d(π2 ∧ Ω) = dπ2 ∧ Ω + π2 ∧ dΩ
= dπ2 ∧ Ω − π2 ∧ π2 ∧ κ

= dπ2 ∧ Ω + π2 ∧ ∗π2

= dπ2 ∧ Ω + |π2|
2
∗ 1,

i.e.

dπ2 ∧ Ω = −|π2|
2
∗ 1.

Analogously we get

dσ2 ∧ JΩ = −|σ2|
2
∗ 1.

Now we can express the Ricci tensor of a generalized Calabi–Yau manifold in terms of π2 and σ2. In this case Eq.
(3.13) reduces to

Ric0 =
1
4
ι−1(E1(∗(π2 ∧ π2 + σ2 ∧ σ2)))− 2γ−1(E2(Jdπ2 + Fdσ2)).

Since dσ2 is effective, Fdσ2 = −dσ2. Thus

Ric0 =
1
4
ι−1(E1(∗(π2 ∧ π2 + σ2 ∧ σ2)))− 2γ−1(E2(Jdπ2 − dσ2)).

By the definitions of E1 and E2, using the J -invariance of π2 and formula (2.3), we have

E1(∗(π2 ∧ π2)) = ∗(π2 ∧ π2)−
1
9

∗ ((π2 ∧ π2 + ∗(π2 ∧ π2) ∧ κ) ∧ κ)κ

= ∗(π2 ∧ π2)+
1
9
|π2|

2κ −
1
9

∗ (∗(π2 ∧ π2) ∧ κ2)κ

= ∗(π2 ∧ π2)+
1
9
|π2|

2κ +
2
9
|π2|

2κ

= ∗(π2 ∧ π2)+
1
3
|π2|

2κ

and

E2(dπ2) = dπ2 −
1
2

∗ (Jdπ2 ∧ κ) ∧ κ −
1
4

∗ (dπ2 ∧ JΩ)Ω +
1
4

∗ (dπ2 ∧ Ω)JΩ

= dπ2 −
1
4

∗ (dπ2 ∧ JΩ)Ω −
1
4
|π2|

2 JΩ

= dπ2 +
1
4

∗ (π2 ∧ σ2 ∧ κ)Ω −
1
4
|π2|

2 JΩ ,

where in the last step we have used

0 = d(π2 ∧ JΩ) = dπ2 ∧ JΩ + π2 ∧ dJΩ = dπ2 ∧ JΩ − π2 ∧ σ2 ∧ κ.

In the same way we get

E1(∗(σ2 ∧ σ2)) = ∗(σ2 ∧ σ2)+
1
3
|σ2|

2κ
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and

E2(dσ2) = dσ2 +
1
4

∗ (π2 ∧ σ2 ∧ κ)JΩ +
1
4
|σ2|

2Ω .

Therefore, taking into account that E2 commutes with J , the traceless Ricci tensor of a generalized Calabi–Yau
manifold is given by

Ric0 =
1
4
ι−1(∗(σ2 ∧ σ2 + π2 ∧ π2)+

1
3
(|σ2|

2
+ |π2|

2)κ)− 2γ−1(Jdπ2 − dσ2 +
1
4
(|π2|

2
− |σ2|

2)Ω). (4.1)

Formula (4.1) implies that the metric induced by a GCY structure (κ,Ω) is Einstein (i.e. Ric0 = 0) if and only if the
torsion forms π2, σ2 satisfy

σ2 ∧ σ2 + π2 ∧ π2 +
1
6
(|π2|

2
+ |σ2|

2)κ ∧ κ = 0

Jdπ2 − dσ2 +
1
4
(|π2|

2
− |σ2|

2)Ω = 0.
(4.2)

In the special case of SGCY manifolds we can prove

Corollary 4.1. A 6-dimensionals SGCY manifold is Einstein if and only if it is a genuine Calabi–Yau manifold.

The proof of Corollary 4.1 relies on the following lemma which is interesting in its own right.

Lemma 4.2. Let (V, κ,Ω) be a 6-dimensional symplectic vector space endowed with a normalized κ-positive 3-form.
If α 6= 0 belongs to Λ2

8V ∗, then α ∧ α does not belong to the 1-dimensional SU(3)-module generated by κ ∧ κ .

Proof. The key observation here is that Λ2
8V ∗ is isomorphic as a SU(3)-representation to the adjoint representation

V1,1. Since every element in su(3) is Ad(SU(3))-conjugate to an element of a fixed Cartan subalgebra of su(3), there
exists a SU(3)-basis {e1, . . . , e6

} of V ∗ such that

α = λ1e12
+ λ2e34

− (λ1 + λ2)e56,

for some λ1, λ2 ∈ R. Now suppose that α ∧ α = qκ ∧ κ for some q ∈ R. Setting to zero the three components of
α ∧ α − qκ ∧ κ gives the equations

λ2
1 + λ1λ2 + q = 0,

λ2
2 + λ1λ2 + q = 0,
λ1λ2 − q = 0,

which readily imply q = 0. �

Proof of Corollary 4.1. Since in the SGCY case π2 = 0, taking into account Lemma 4.2, the first equation of (4.2)
can be satisfied if and only if |σ2|

2
= 0. Therefore the Einstein condition forces (κ,Ω) to be a Calabi–Yau structure

on M . �

Remark 4.3. In [19] it has been proven (see Theorem 1) that a compact Einstein almost Kähler manifold with
vanishing first Chern class is actually a Kähler–Einstein manifold. Note that our result holds with no compactness
assumption.

5. An explicit example

In this last section we carry out the computation of the Ricci tensor and the intrinsic torsion of a left-invariant
SU(3)-structure on a particular 6-dimensional nilmanifold.
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Let G be the nilpotent Lie group of the matrices of the form

A =


1 0 x1 x3 0 0
0 1 x2 x4 0 0
0 0 1 x5 0 0
0 0 0 1 0 0
0 0 0 0 1 x6
0 0 0 0 0 1


where x1, x2, x3, x4, x5, x6 are real numbers. Let Γ be the set of matrices in G having integral entries; then M := G/Γ
is a compact parallelizable smooth manifold. Let {X1, . . . , Xn} be the global frame on M given by

X1 =
∂

∂x5
+ x1

∂

∂x3
+ x2

∂

∂x4
, X2 =

∂

∂x6
,

X3 =
∂

∂x2
, X4 =

∂

∂x3
, X5 =

∂

∂x1
, X6 =

∂

∂x4
.

We have that

[X1, X3] = −X6, [X1, X5] = −X4

and the other brackets are zero. Let {α1, . . . , α6} be the dual frame of {X1, . . . , Xn}; thendα1 = dα2 = dα3 = dα5 = 0
dα4 = α15
dα6 = α13.

Therefore the closed global forms

κ = α12 + α34 + α56,

Ω = α135 − α146 − α245 − α236

define a SGCY structure on M . Let J be the almost complex structure on M induced by the SU(3)-structure; then on
the frame {X1, . . . , X6} one has

J (X1) = X2, J (X3) = X4, J (X5) = X6.

We have

dJΩ = d(−α246 + α235 + α145 + α136) = α1234 − α1256 = (α34 − α56) ∧ κ,

i.e., with the notation of (2.8),

σ2 = α56 − α34.

Since (M, κ,Ω) is a SGCY manifold, σ2 is the only non-zero torsion form.
Note that the metric associated with (κ,Ω) is

g =

n∑
i=1

αi ⊗ αi .

Consequently we have |σ2|
2

= 2, and hence formula (3.12) implies s = −1.
Using (4.1) we can compute the Ricci tensor of g: we have

Ric0 = ι−1
(

−
1
2
α12 +

1
6
κ

)
+ γ−1(−4α135 + Ω)

= ι−1
(

−
1
3
α12 +

1
6
α34 +

1
6
α56

)
+ γ−1(−3α135 − α146 − α245 − α236).
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Let ∇ be the Levi-Civita connection of g; then

∇1 X3 = −
1
2

X6, ∇1 X6 =
1
2

X3, ∇3 X6 = −
1
2

X1,

∇3 X1 =
1
2

X6, ∇6 X1 =
1
2

X3, ∇6 X3 = −
1
2

X1,

∇1 X5 = −
1
2

X4, ∇1 X4 =
1
2

X5, ∇5 X4 = −
1
2

X1,

∇5 X1 =
1
2

X4, ∇4 X1 =
1
2

X5, ∇4 X5 = −
1
2

X1,

where ∇i X j stands for ∇X i X j . Now are ready to compute the torsion of this SU(3)-manifold. We immediately have

ψ =
1
2


0 0 −α6 −α5 −α4 −α3
0 0 0 0 0 0
α6 0 0 0 0 α1
α5 0 0 0 −α1 0
α4 0 0 α1 0 0
α3 0 −α1 0 0 0


and a computation gives

θ =
1
4


0 0 −α6 −α5 −α4 −α3
0 0 α5 −α6 α3 −α4
α6 −α5 0 0 0 2α1
α5 α6 0 0 −2α1 0
α4 −α3 0 2α1 0 0
α3 α4 −2α1 0 0 0


and

τ =
1
4


0
0
α5

−α3
−α6
α5

 , µ = 0.
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Appendix

In this appendix we give proofs of Lemma 2.8 and Theorem 3.4.

Proof of Lemma 2.8. Let N be the Riemannian product N = M × R. Denote by

p1 : N → M,

p2 : N → R

the projections. The 3-form

σ = p∗

1(Ω)+ p∗

1(κ) ∧ p∗

2(dt),
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defines a G2-structure on N . From now on we identify the forms κ , Ω , dt with their respective pull-backs to N . Let
us denote by ∗σ and ∗ the Hodge operator associated with the metric induced by σ and by the SU(3)-structure on M
respectively. Thus

dσ = dΩ + dκ ∧ dt,

∗σ σ = (∗Ω) ∧ dt + ∗κ = JΩ ∧ dt +
1
2
κ2,

d ∗σ σ = dJΩ ∧ dt + dκ ∧ κ,

∗σ dσ = (∗dΩ) ∧ dt − ∗dκ,
∗σ d ∗σ σ = ∗dJΩ + ∗(dκ ∧ κ) ∧ dt.

Now we use the formula

∗σ σ ∧ ∗σ (d ∗σ σ)+ (∗σ dσ) ∧ σ = 0, (A.1)

proved by Bryant in [9]. Now we have

∗σ σ ∧ ∗σ (d ∗σ σ)+ (∗σ dσ) ∧ σ = JΩ ∧ (∗dJΩ) ∧ dt +
1
2
κ2

∧ (∗(dκ ∧ κ)) ∧ dt

+
1
2
κ2

∧ ∗dJΩ − (∗dΩ) ∧ Ω ∧ dt − (∗dκ) ∧ Ω − (∗dκ) ∧ κ ∧ dt.

Therefore Eq. (A.1) implies

• (∗dκ) ∧ Ω =
1
2κ

2
∧ ∗dJΩ , which is indeed an easy consequence of Ω ∧ κ = 0;

• JΩ ∧ (∗dJΩ)+
1
2κ

2
∧ ∗(dκ ∧ κ)− (∗dΩ) ∧ Ω − (∗dκ) ∧ κ = 0.

In order to show that Eq. (2.9) holds, we need to prove the following identity

1
2
κ2

∧ ∗(dκ ∧ κ) = (∗dκ) ∧ κ. (A.2)

The decomposition of 3-forms on M implies

1
2
κ2

∧ ∗(dκ ∧ κ) =
1
2
κ2

∧ ∗(ν1 ∧ κ2) = (Fκ) ∧ ∗(ν1 ∧ κ2)

and

(∗dκ) ∧ κ = (∗(ν1 ∧ κ)) ∧ κ,

where ν1 ∧ κ ∈ Λ3
6 M = {γ ∈ Λ3 M | Fγ = γ }. Now we need to recall the following lemma proved in [17];

Lemma A.1. Let ζ ∈ Λ1V ∗ and γ ∈ Λr V ∗; we have

F(ζ ∧ γ ) = (−1)rζ ∧ F(κ ∧ γ )− (−1)rF(κ ∧ F(ζ ∧ Fγ )). (A.3)

Applying Eq. (A.3) with ζ = ∗(ν1 ∧ κ2) and γ = 1 ∈ Λ0 M we have

(Fκ) ∧ ∗(ν1 ∧ κ2) = F(∗(ν1 ∧ κ2)) = ∗J (∗(ν1 ∧ κ2)) = −Jν1 ∧ κ2. (A.4)

Moreover, since ν1 ∈ Λ3
6 M , it follows that

∗(ν1 ∧ κ) ∧ κ = −Jν1 ∧ κ2. (A.5)

Eq. (A.4) together with Eq. (A.5) implies (A.2), so that Eq. (2.9) is proved. �

Proof of Theorem 3.4. In order to prove formula (3.11) it is useful to introduce the 1-forms Si jkωk , Vikωk , defined
by the relations

dTi j = Tikθk j + Tk jθki + Si jkωk,

dMi = Mkθki + Vikωk .
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Using Eqs. (3.5) and (3.6) and the definition of Ti j , Mi given in (3.2)

Dτi = dTi j ∧ ω j + Ti j dω j − 2κi jµ ∧ τ j

= (Siba − Ti j Tqaε jbq − Ti jκ jb Ma − 2κi j MaT jb)ωa ∧ ωb,

and

Dµ = dMr ∧ ωr + Mr dωr +
2
3
κi jτi ∧ τ j

=

(
Vba − Mrεrbq Tqa − Mrκrb Ma +

2
3
κi j TiaT jb

)
ωa ∧ ωb.

Therefore, taking into account (3.8) and (3.9), we obtain

Tiab = 2(Siba − Ti j Tqaε jbq − Ti jκ jb Ma − 2κi j MaT jb),

Nab = 2
(

Vba − Mrεrbq Tqa − Mrκrb Ma +
2
3
κi j TiaT jb

)
.

It follows that

εi pq Tpq j = 2(εi pq Spjq − εi pqεr js Tpr Tsq − εi pq Tprκr j Mq + 2εiqr Tr j Mq),

κi p Npj = 2
(
κi pV j p − κi pεr jq Tqp Mr − κi pκr j Mr Mp +

2
3
κi pκqr TqpTr j

)
and using the ε-identities (2.6)

εi pq Tpqi = 2(−εi pq Si pq − εi pqεris Tpr Tsq − ε prq Tpr Mq + 2εqri Tri Mq)

= 2(−εi pq Si pq − εi pqεris Tpr Tsq + ε prq Tpr Mq),

κi p Npi = 2
(
κi pVi p − κi pεriq Tqp Mr − κi pκri Mr Mp +

2
3
κi pκqr TqpTri

)
= 2

(
κi pVi p + εrqpTqp Mr +

2
3
κi pκqr TqpTri +

∑
i

M2
i

)
.

Then by Theorem 3.2 we get

s = 4(−εi pq Si pq − εi pqεris Tpr Tsq + ε prq Tpr Mq)− 6

(
κi pVi p + εrqpTqp Mr +

2
3
κi pκqr TqpTri +

∑
i

M2
i

)
= −4εi pq Si pq − 4εi pqεris Tpr Tsq − 2ε prq Tpr Mq − 6κi pVi p − 4κi pκqr TqpTri − 6

∑
i

M2
i .

Furthermore a straightforward computation gives the following formulae

π2
0 =

4
9

Ti i T j j ,

σ 2
0 =

4
9
κi jκsr Ti j Tsr ,

|π2|
2

= −
4
3

Ti i T j j + 4T 2
i j − 2εsraεai j Tsr Ti j + 4κirκ js Ti j Tsr ,

|σ2|
2

= −2εsraεai j Tsr Ti j −
4
3
κi jκabTi j Tab − 4Ti j T j i + 4

∑
i j

T 2
i j ,

|ν1|
2

= εi jkεkabTi j Tab,

|ν3|
2

= 2T 2
i j + 2Ti j T j i − 2κ jrκis Ti j Trs − 2κirκ js Ti j Trs,

d∗π1 = −εsraεai j Tsr Ti j + 4εi jk Ti j Mk − εsra Ssra − 3κi j Vi j − 3
∑

i

M2
i ,
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d∗ν1 = −εsraεai j Tsr Ti j + εi jk Ti j Mk − εsra Ssra,

〈π1, ν1〉 = εabkεki j TabTi j − 3εi jk Ti j Mk .

Therefore we get
15
2
π2

0 +
15
2
σ 2

0 + 2d∗π1 + 2d∗ν1 − |ν1|
2
−

1
2
|σ2|

2
−

1
2
|π2|

2
−

1
2
|ν3|

2
+ 4〈π1, ν1〉

= 4Ti i T j j + 4κi jκsr Ti j Tsr − 5
∑

i j

Ti j + εsraεai j Tsr Ti j + Ti j T j i − 2εi jk Ti j Mk

− 6κi j Vi j − 6
∑

i

M2
i + (−κiaκ jb + κibκ ja)Ti j Tba − 4εi jk Si jk

= 4εi pq Si pq − 4εi pqεris Tpr Tsq − 2ε prq Tpr Mq − 6κi pVi p − 4κi pκqr TqpTri − 6
∑

i

M2
i ,

i.e.

s =
15
2
π2

0 +
15
2
σ 2

0 + 2d∗π1 + 2d∗ν1 − |ν1|
2
−

1
2
|σ2|

2
−

1
2
|π2|

2
−

1
2
|ν3|

2
+ 4〈π1, ν1〉,

and the theorem is proved. �
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