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Abstract

Following the approach of Bryant [R. Bryant, Some remarks on G,-structures. e-print: math.DG/0305124] we study the intrinsic
torsion of a SU(3)-manifold deriving a number of formulae for the Ricci and the scalar curvature in terms of torsion forms. As a
consequence we prove that in some special cases the Einstein condition forces the vanishing of the intrinsic torsion.
© 2006 Elsevier B.V. All rights reserved.
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0. Introduction

In the last few years geometric and physical motivations led many mathematicians to focus on the geometry of
SU(3)- and Gy-structures on 6- and 7-dimensional manifolds and on the interplay between them (see e.g. [2-5,10-14,
20] and the references therein). New directions in this field were suggested by the work of Hitchin [22]. The present
work is inspired by [10], where the author computes the Ricci curvature of a G;-structure in terms of the derivatives
of the defining 3-form.

In this paper we study the intrinsic torsion of SU(3)-manifolds relating it to the curvature of the induced metric.

A SU(3)-structure on a 6-dimensional manifold is determined by a pair (k, {2), where « is an almost symplectic
structure and {2 is a normalized «-positive 3-form (see Section 2 for the definition). In fact such a pair induces a
natural x-calibrated almost complex structure J on M such that the complex valued form

e=0N+iJS

is of type (3,0) with respect to J. The intrinsic torsion of a SU(3)-structure can be described in terms of the
derivatives of the defining forms (, £2) by considering a natural decomposition of A3M and A*M in irreducible
SU(3)-submodules. Namely the forms d«, df2 and d*§2 decompose as

3 3
dx = —EO'()Q + EWOJQ + v Ak +vs;
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d2 = mor? + 11 A 2 — 10 Ak
dJQ=00K2+Jm/\Q—02/\K,

where g, 09, 71, v1, 02, V3 lie in different SU(3)-modules. The forms {mg, 09, 71, v, 02, v3} are called the torsion
forms and they vanish if and only if the SU(3)-structure is integrable, i.e. if and only if the induced metric is Ricci-
flat so that (M, «, §2) is a Calabi—Yau threefold. Moreover special non-integrable SU(3)-structures, e.g. generalized
Calabi—Yau structures! and half-flat structures, can be characterized in terms of torsion forms. In the spirit of [10] a
principal bundle approach allows us to write down the Ricci tensor and the scalar curvature of a SU(3)-manifold in
terms of torsion forms. As a direct consequence of these formulae we get that the scalar curvature of a generalized
Calabi—Yau manifold is non-positive and it vanishes identically if and only if the SU(3)-structure is integrable. We
also prove that the metric of a special generalized Calabi—Yau manifold M is Einstein if and only if M is a genuine
Calabi—Yau manifold.

The paper is organized as follows. In Section 1 general SU(n)-structures are introduced. In Section 2, which is the
algebraic core of the paper, we specialize to the 6-dimensional case studying the algebra underlying SU(3)-structures.
In particular we exhibit an explicit expression for the complex structure induced by (k, §2). In this section we define
the torsion forms and characterize various special SU(3)-structures in terms of these forms. The work in Section 3
follows the steps of [10] where the formula for the Ricci curvature of a Gp-structure is derived. We exploit the
algebraic formulae obtained in Section 2 in order to come to the explicit formula for the Ricci tensor (3.13). Here
the final computation was carried out with the aid of MAPLE while a representation-theoretic argument justifies the
final formulae. In Section 4 we collect the above mentioned consequences of formula (3.13) in the special case of
generalized Calabi—Yau manifolds. Section 5 is devoted to the explicit computations performed on a non-integrable
special generalized Calabi—Yau nilmanifold which illustrate the role of the torsion forms in this case. In the Appendix
some technical proofs are provided.

NOTATION. Given a manifold M, we denote by A" M the space of smooth r-forms on M and we set A°M =
€B;_; A”M. When an almost complex structure J on M is given, A’J”qM denotes the space of complex forms on
M of type (p, gq) with respect to J.

The symplectic group, i.e. the group of automorphisms of R?" preserving the standard symplectic form «, =
Yoi_ i dx2i—1 A dxo;, will be denoted by Sp(n, R).

Furthermore when a coframe {«7q, .. ., «,} is given we will denote the r-form o;; A - Ao, by @i,

In the indicial expressions the symbol for sum over repeated indices is omitted.

1. SU(n)-structures
1.1. U(n)-structures

Let (M, k) be a 2n-dimensional almost symplectic manifold. The symplectic Hodge operator
*:AM— A"TM,

is defined by means of the relation
K_I’l
aAKB =k, ﬂ)m,

where o, 8 € A" M. It is easy to check that %2 = I. An almost complex structure on M is an endomorphism J of T M
such that J2 = —1. Note that the endomorphism induced by J on A” M (again denoted by J) satisfies the identity
J? = (=1)PI. An almost complex structure is said to be «-tamed if

kx(v, Jyv) >0

1 We remark that the notion of generalized Calabi—Yau structure that we consider is the one adopted in [18] which is different from that given by
Hitchin in [21].
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for every x € M and non-zero vector v € T, M. If further « is preserved by J, the almost complex structure is said to
be «-calibrated. In this case we denote by g, the Riemannian metric

g1(X,Y) = «(X,JY), (1.1)

for every vector field X, Y on M. We immediately get that J is an isometry of g, i.e. gy is J-Hermitian. We denote
by C, (M) the space of «-calibrated almost complex structures on M. The elements of C, (M) can be viewed as smooth
global sections of a fiber bundle whose fibers are isomorphic to the homogeneous space

Sp(n, R)/U(n)

(see e.g. [6]). Since the latter is topologically a (n + n?)-dimensional cell, given any almost symplectic form «, there
are always plenty of «-calibrated almost complex structures. Furthermore the fact that C, (M) is contractible makes
it possible to define the first Chern class ¢ (M, k) of the almost symplectic manifold (M, k) as c;(M, J), where
J € Ce(M).

Given J € C,(M) the complexified exterior algebra A*M ® C is Z*-bigraded with respect to the type as

2
A*MQC = é P 479m.
r=0 p+q=r

The metric g, together with the orientation given by « defines also the classical Hodge operator, that in this setting is
a C-linear map * : A[J”qM — A'J’_q’n_pM, such that

n

o n 4B = g B) .
for all o, B € AIJ”qM . It is well known that * commutes with J and that their composition equals the C-linear
extension of the symplectic Hodge operator:
*J = J*x = *.
Since we have
d:APIM — AP @ APy @ AP M @ AN Y,
the exterior differential operator accordingly splits as
d=A;+3;+3,+Ay.

It is well known that an almost complex structure is integrable if and only if A; = 0.
1.2. SU(n)-structures

Let M be a 2n-dimensional manifold and £(M) be the GL(2n, R)-principal bundle of linear frames. A SU(n)-
structure on M is a SU(n)-reduction of L(M). Since SU(n) is the group of the unitary transformation of C” preserving
the standard complex volume form, a SU(n)-structure on M is determined by the choice of the following data:

e an almost complex structure J on T M,
e a J-Hermitian metric g;
e a complex (n, 0)-form € of constant norm 23,

Alternatively these data can be replaced by

e an almost symplectic structure «;

e a k-calibrated almost complex structure J;

e a complex (n, 0)-form ¢, satisfying e A€ = ¢, %, with ¢, = (—1) e 21",
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where « and g are related by (1.1). Denote by V the Levi-Civita connection induced by g on 7M. We will say that a
SU(n)-structure is integrable if the restricted holonomy group Hol®(7 M, V) is isomorphic to a subgroup of SU(n).
Since the holonomy is determined by the parallel tensors, a SU(n)-structure is integrable if the corresponding triple
(x, J, €) satisfies

Vk =0, VJ =0, Ve =0.

In this case (M, k, J, €) is said to be a Calabi—Yau manifold.

Remark 1.1. Let (M, «, J, ¢) be a SU(n)-manifold and assume
de =0, de =0,

then (M, «, J, €) is a Calabi—Yau manifold. In fact if « € Ab’OM we have
0=deAra)=(—D"s Ada = (—1)"e A Aja,

and hence A 7 = 0, which implies that J is integrable. Furthermore, since « is closed, the pair (k, J) defines a Kihler
structure on M ; hence we get

Vi =0, vJ =0.
Finally the equation ¢ A€ = ¢, ’;—r,l forces ¢ to be parallel.

Several non-integrable SU(n)-structures are worth considering for both geometrical and physical reasons (the
survey article [1] is a good reference for recent results on non-integrable geometries).
A notion of generalized Calabi—Yau manifold has been introduced by de Bartolomeis and Tomassini; in [18] they give
the following definition:

Definition 1.2. A generalized Calabi-Yau (GCY) structure on M is a SU(n)-structure (k, J, &) satisfying the
following conditions:

1. dk = 0 (i.e. (M, k) is a symplectic manifold);
2. 9,6 =0.

We emphasize again that a different generalization of Calabi—Yau structures has been considered by Hitchin in a
broader context in [21].

Remark 1.3. For an almost Kahler manifold (i.e. a symplectic manifold endowed with a calibrated almost complex
structure) it is natural to consider on 7 M the canonical Hermitian connection V, whose covariant derivative is given
by

~ 1
Vx = Vy — 3 JVxJ.

It is characterized by the following properties

~ ~ 1
Vi =0, vVJ =0, T :EN],
where N is the Nijenhuis tensor associated with J and A is the torsion of V. This connection coincides with V if
and only if the pair (k, J) is a K&hler structure on M (i.e. if and only if J is integrable).
If (M, k, J, ¢) is a symplectic SU(3)-manifold, then the constraint ¢ A€ = ¢, ’;—’,l implies

Jje=0 & Ve=0,

(see [18]). Hence GCY manifolds can be defined as SU(n)—mgnifolds with the volume form ¢ satisfying Ve = 0. 1t
follows that in the GCY case the holonomy group Hol’(T M, V) is isomorphic to a subgroup of SU(x).
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2. SU(3)-structures

In this section we specialize to the case n = 3 and study the linear algebra underlying SU(3)-structures. Fix a
real 6-dimensional symplectic vector space (V, k). Let us denote by Sp(V, k) the group of automorphisms of the pair
(V,k),i.e.Sp(V, k) = {¢p € GL(V) : ¢*k = «}. The space of skew-symmetric 3-forms on V splits into the following
two irreducible Sp(V, «)-modules

AV ={p e BPV* | p Ak =0},
AgV*:{a/\K|aeV*}.

The 3-forms lying in the space ASV* are sometimes called in the literature effective 3-forms (see e.g. [7]). Let us
consider the action O of the Lie group G = Sp(V, «) x R on the space ASV* given by

0@, 1) -a =1t e,

where R% denotes the group of positive real numbers. It is known that this action has an open orbit O whose isotropy
is locally isomorphic to SU(3) (see e.g. [7,24]). We will call k-positive 3-forms the elements of the orbit O. Since
the stabilizer at {2 € O is locally isomorphic to SU(3), each «-positive 3-form singles out a x-calibrated complex
structure on V which we are able to explicitly write down. In fact we have:

Proposition 2.1. The endomorphism Py of V* given by
1
Po:ar— _E*(Q AKX (2 A a))

has the following properties

1. Pé is a negative multiple of the identity;
2. k(Pga, B) = —k (o, Pop), for every a, B € A'V*,

Proof. 1. First we observe that Py, is a SU(3)-invariant endomorphism of V*, since it is built using only {2 and %*.
Since SU(3) acts irreducibly on V*, the real version of Schur’s lemma assures that P = al + bJ, where J is a
complex structure on V* and a, b are real numbers.

Now we claim that Pé has a negative eigenvalue. From this claim the conclusion follows. Suppose indeed that there

exists v # 0 such that Pév = Av, with A < 0. Then
2abJv = (A — a® + bP)v.

If ab # 0, then J would have a real eigenvalue and this is impossible. On the other hand if » = 0 then Pé = a?l,

which is a contradiction with the claim. Hence P, = bJ. To prove the claim we must use an explicit frame
{el, R e6} of V* in which « and {2 takes the standard form and perform the computation, e.g., of Péel.
2. We have

i3 i3 1
k(Ppa, ﬁ)g = —«(B, P_QO()F = Eﬁ AD AKX Aa)

1 3 1 3
—SKBALan Q)% = —SK@A 2B A Q)%

3 3
= K(P_Qﬂ,a)% = —k(a, PQ,B)%. O

The following is immediate:

Corollary 2.2. The endomorphism Jgk-dual to (det PQ)_% Pg is a k-calibrated almost complex structure on V.
Furthermore the form

e=0N+iJpN
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is a complex form of type (3, 0) with respect to Jq. If further det(Pp) = 1, then

4
8/\§=i§K3. 2.1

We have also this characterization of k-positive 3-forms.

Lemma 2.3. These facts are equivalent
1. 2 is a k-positive 3-form;
2. themap Fo : A'V* 5 o +— a A £ is injective and k is negative definite on the image of F).

Remark 2.4. Note that since « is Jp-invariant, also J {2 is effective, i.e. k A Jo {2 = 0.

Definition 2.5. A x-positive 3-form is said to be normalized if det(Pg) = 1.

From now on we will drop the subscript {2 from J when no confusion arises.

In order to make the exposition more concrete we identify V with R®; we denote by {ei1, ..., ec} the standard basis
and by {el, e, eﬁ} the dual one.

Fix on V the standard symplectic form

Ko = ' + &3 4 5
and the standard complex volume form

gy = (e1 + iez) A (e3 + ie4) A (e5 + ieé).
The real part of g9

-QO — 6135 _ 6146 _ 6245 _ 6236

is a normalized «g-positive 3-form. The complex structure associated with (2 is exactly the standard «¢-calibrated
complex structure Jy defined by

Jo(er) = e, Jo(e3) = eq, Jo(es) = es.

We will denote by gg the scalar product associated with (k¢, Jo). Note that go is simply the standard Euclidean inner
product.

Using the standard forms «p and () by straightforward computations we can obtain some useful identities
concerning k-positive 3-forms.

Lemma 2.6. Let (V, k) be a symplectic vector space and {2 a normalized k-positive 3-form; then we have

1. %2 = — 12 (hence also J 2 = x12);
2. QAT = 3k3

2.1. Decomposition of the exterior algebra

Let (V, k) be an arbitrary 6-dimensional symplectic vector space and (2 a normalized «-positive 3-form. Let us
consider the natural action of SU(3) on the exterior algebra A*V*. Obviously SU(3) acts irreducibly on V* and A3V*,
while A2V* and A3V* decompose as follows:

APVE = AV @ NGV @ MGV, 22
BV =BV o vie Lvie 3,V '
where we set

° A%V* = Rk,

o N2V* ={k(anD)|aecAV}={peA2V*|Jp=—gp}

. AéV*:{(pe/le*|(p/\.Q:Oand*goz—fp/\K}z{(pe/le* | Jo =9, 0 Ak? =0},
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and

o/liieV*=R.Q,

e B VI=RIQ={y e BV |yAk=0,y AR =ck’ ceR},
oAgV*:{aAK|aeA1V*}:{yeA3V*|*y:y},

e B Vi={y e BV |y rk=0,yAR=0,y AJ2 =0}

Remark 2.7. Now we emphasize some relations which will be useful:
1. Ifp € AéV* &) A%V*, then ¢ = —¢ A k.

2.Ify e A3, V¥ @ A3 V¥ @ A3, V* then ky = —y and y Ak = 0.
3. If « is an arbitrary 1-form, then J(a@ A £2) = —a A (2, and consequently from the definition of J it follows that

J2 A (2 Aa) = —2%a.
4.1f B € AZV* then
x(BAB)AKZ=BABA*k>=2BABAK

3
= 26 A %B = 2B’

so that
£(1K A*¥(B A B)) = —21B1%. (2.3)

We can obtain the decomposition of A%V * using the duality given by the symplectic star operator.
Moreover we define the projections

Ey: A2V — AV,
Ey: AVF — A, V*
by

1 1
Ei(ax) = E(a + Ja) — T * ((k(a +Ja) + (a0 + Ja) Ak) AK)k, 2.4

Ez(ﬁ)zﬁ—%*(Jﬁmc)mc—%*(ﬁAm)Q—%*(QAﬂ)m. 2.5)

Note that E; commutes with = since the latter is an automorphism of A?ZV*. The same is true for J (and hence
also for ¥).

2.2. The e-identities

As done by Bryant in the G, case we introduce the following e-notation, which will be useful in the sequel.

1 . - T
k = ijk
= ceijee’,  xlh= e’ ko= kijet.

We will use the following identities, whose proof is straightforward:

€ipgkpg = 0;

Kipkpj = —8ij;

€ijpKpr = €ijr;

Eiijpr = —€ijr; (2.6)
€ipg€jpg = —4Kij;

€ipg€jpg = 40ij = €ipg€jpg;

€ijp€xip = —Kik8j1 + K jkSi1 + Ki1d jk — K ji8ik;

€ijp€klp = —KikKjl + KiiKji + 0ik8j1 — 8k8i1 = €;jk€ipg-
jp€kip j j j j jk€ipq
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These equations will be called e-identities. As a first application of these formulae we can decompose the Lie algebra
50(6) as follows. Consider the real representation of complex matrices induced by Jy

p:gl(3,C) — gl(6,R),

Rea;; Ima;;
—Ima,-j Rea,-,-

where p(A) is the block matrix (B;;); j=1,2,3, with B;; = (
and only if

). Thus a matrix A = (a;;) lies in su(3) if

€jkajrk =0 and «jrajr =0.
So we have the decomposition

50(6) = su(3) @ [R]; @ [R°:,
where

(lal)ij = axij, ([v]2)ij = €ijpup-
2.3. Decomposition of symmetric 2-tensors

In order to express the Ricci tensor in terms of skew-symmetric forms we must establish the correspondence which
we are going to describe. The 21-dimensional space of the symmetric covariant 2-tensor on V splits into irreducible
su(3)-modules as follows:

S?V* =Rgo @ S2 @ S2,

where
S2 ={h € S*V*: Joh = h, trgyh = 0},
SZ ={h e S*V*: Joh = —h}.

We will denote by Sg the direct sum S_%_ ®S2.
The maps

L Si — A%V*,

y: 82 — A?ZV*
defined by

L(hl-jeiej) = hiplcpjeij,

y(hije'el) = hipépjkeijk

are isomorphisms of su(3)-representations.
2.4. SU(3)-structures on manifolds

Let M be a 6-dimensional manifold. A SU(3)-structure on M is determined by the choice of:

e anon-degenerate 2-form «,
e a normalized x-positive 3-form 2 (i.e. £2[x] is x [x]-positive and normalized at every x in M).

In fact, as we have seen, {2 determines a «-calibrated almost complex structure J such that ¢ = {2 4 1J {2 is of type
(3, 0) and satisfies Eq. (2.1). We refer to ¢ as to the complex volume of («, £2). In the sequel the induced scalar product
will be denoted by g or alternatively by (, ) and the associated Hodge operator by .

Note that the SU(3)-structure determined by (k, {2) is integrable if and only if

dc =0, dQ=d*Q=0. 2.7)
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In fact, since J {2 = *{2, Eq. (2.7) are equivalent to
de =0, de = 0.
Hence, since e A€ = i% «3, Remark 1.1 implies
Vk =0, vVJ =0, Ve=0 < d« =0, de = 0.

2.5. Torsion forms

Let (M, k, §2) be a SU(3)-manifold. According with (2.2) the space of r-forms splits into s11(3)-modules as follows:
A*M = NiM & NZM & A3M,
ABM =R Mo Mo AiMe A,M,
A'M = ATM & A¢M & AM,

where the meaning of the symbols is obvious. Consequently the derivatives of the structure forms decompose as

de = vof2 + g J 2 +vi Ak + v3,
df? = 7T()K2 + 71 A2 — 1 Ak, (2.8)
dJ2 =opk’> + 01 A2 —03 Ak,

where vg, ag, 70, 09 € C°(M,R), v, 71,01 € A'M, 715, 09 € A%M and v3 € A?ZM.
The following equations are derived from a G, formula which was obtained in [9].

Lemma 2.8. With the notation introduced above
JONANAID) — (xd) A2 =0. (2.9)
Proof. See the Appendix. [J

Now we are able to prove the following

Theorem 2.9. The following relations hold:

1. Tp = %(xo,
2. 00 = —%vo,
3. 01 =Jm.

Proof. 1. From the relation 2 A k = 0 it follows that

0=d(2 Ak)=dR2 Ak — 2 ANdk

= TokS — T AKE —agR AT — DA

2
<7T() — §Ol()> K3,

where we have used that 72 A k2 =0, 2 A vz = 0.
2. Analogous to 1 starting from « A J {2 = 0.
3. This formula is a consequence of formula (2.9) together with the definition of J. We have

0=GdD) AR —JNR A*dJ S
=x(mM A A2 — T2 Ax(o1 A L)
=—J(k(@ AR)ANJTD)—J(2 AK(o] A R2))
=JUR AKX AT+ T2 A K2 Aoy)).

Applying the definition of J and Remark 2.7 we get
J(=2%m) — J(2J%o01) = =2 %7 + 2%o01 =0,
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i.e.
oy =Jm. O

Hence we can rewrite (2.8) as:

3 3
de = —500.94— ETL’()JQ—FUl A K+ v3;

d2 = mo? + 11 A 2 — 13 A K
dJ.Q:UOK2+JJT1 AL — oy Ak.

Definition 2.10. The forms {mg, 09, 71, v1, 02, v3} are called the torsion forms of the SU(3)-structure.

A SU(3)-structure is integrable if and only if all of the torsion forms vanish identically.
Several interesting special SU(3)-structures can be described in terms of torsion forms.

1. 6-dimensional GCY structures. Let (M, k, {2) be a 6-dimensional GCY manifold. The equation d« = 0 implies
w9 =09 =0, v =0, v3 = 0.
Therefore df? and dJ {2 reduce to
d22=m A2 —m) ANk,
dJ =Jmi A2 — o9 Ak.
Since the complex volume form ¢ associated with («, £2) is of type (3, 0), 9 ;¢ is the (3, 1)-part (and hence the J

anti-invariant part) of de. Thus we have

1
dje = E(ds — Jde).

1
0je = z(de — Jde)
1
= 5(d9+id]()—]d9—i]d]ﬁ)
1
= E{dQ —Jd2 +i(dJ 2 — JdJ )}

1
= E{JTl AN =T A +i(Jmp A2 —J(Jm A £2))}
=mAR+iJa AL

Hence by Lemma 2.3 the equation 3 & = 0 is equivalent to r; = 0. It follows that 6-dimensional GCY structures
can be defined as SU(3)-structures satisfying
7'[():00:0, V1=7T1=0, 1)320.
2. Special generalized Calabi—Yau structure. These structures were introduced and studied first by P. de Bartolomeis
in [16].

Definition 2.11. Let M be a 6-dimensional manifold. A special generalized Calabi—Yau structure (SGCY) on M
is a SU(3)-structure such that the defining forms «, {2 are closed, i.e.

de =0, dN? =0.

Special generalized Calabi—Yau manifolds can be considered as a subclass of generalized Calabi—Yau manifold,
in fact it is immediately verified that in this case the complex volume form ¢ associated with (k, {2) satisfies the
condition 2 of Definition 1.2 (see [18]). SGCY manifolds are taken into consideration also in [8,15,25].

Such a structure can be characterized by

g =09 =0, vi =m =0, 7w =0, v3 = 0.

3. Half-flat structure. Half-flat manifolds have a central role in the evolution theory developed by Hitchin in [22] and
can be used to construct non-compact examples of Go-manifolds.
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Definition 2.12. A SU(3)-structure («, {2) is said to be half-flat if the structure forms satisfy the equations

dixk Ak) =0, de =0.
Let («, §2) be a half-flat structure. By the hypothesis df2 = 0 we get

=0, i=0,1,2;

then

3

de = _EUOQ + v Ak + v3.

On the other hand the hypothesis d(k A k) = 0 implies

3
OZdK/\KZ—EJQQ/\K-}-vl/\K2+V3/\K=U1/\K2,

which forces vy to vanish, since the exterior multiplication by «? is an isomorphism on A' M. Therefore half-flat
structures can be described as SU(3)-structures satisfying

=0, i=0,1,2, v = 0.
2.6. Some SU(3) representation theory

Every irreducible representation p of the simple Lie group SU(3) can be labeled with a pair of integers (p, q) that
represent the highest weight of p with respect to a fixed base of the root system of a fixed maximal torus of SU(3). We
will denote p by A, 4. Nevertheless in the sequel we need to deal with real representation of SU(3), so (like in [23])
we will define the irreducible real representations V), , (p # ¢g) and V, ,, by

Vg ®rRC =24pg @ Ag,p,
Vo p @RC = Ap p.

Keeping this fact in mind, we can use the complex representation theory to decompose a given real SU(3)-
representation into irreducible real SU(3)-modules. As is well known (see [10]) the polynomial pointwise invariants
of order k are polynomials in a canonically defined section of the vector bundle

Q X oy (V1(5u(3)) @ - - - @ Vie(5u(3))),
where Q is the SU(3)-reduction and V; (su(3)) is the SU(3)-representation uniquely defined by
(916, R)/su(3)) ® 87 (R®) = V;(su(3)) ® R° ® S/ (R")).
For the first-order invariants we have
Vi(su(3)) = s0(6)/su(3) @ R®
so that
Vi(su(3)) = 2Vo,0 ® 2(R)* @ 243 @ A3,

which matches with the degree and types of our torsion forms. Rather standard calculation in su(3)-representation
theory allows us to decompose also the 252-dimensional representation V;(su(3)) into su(3)-irreducible submodules

Va(su(3)) =3Vo,0 ®4Vi0 @ 5Vi,1 @3Va 1 @4V20@ Va0 ® Vap.
3. Riemannian invariants of SU(3)-structures
3.1. The Levi-Civita connection

Fix a SU(3)-reduction Q of the linear frame bundle £L(M), given by the pair (k, £2). Q is a subbundle of the
principal SO(6)-bundle p : F — M of the normal frames of the metric g associated with the pair («, {2). Consider on
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the bundle F the tautological RO-valued 1-form e defined by wlu](v) = u(p«lu]v) foreveryu € F andv € T,F.On
JF we have also the Levi-Civita connection 1-form 1 taking values in s0(6). Using the canonical basis {ey, ..., eg} of
R® we will regard o as a vector of R-valued 1-forms on F

w=wie| + -+ weep

and v as a skew-symmetric matrix of 1-forms, i.e. ¥ = (v;;). With this notation the first structure equation relating
w and

do = ¢ Ao, 3.1
becomes dw; = —;; A w;. Note that Eq. (3.1) simply means that v is torsion-free.
The curvature of ¥ is by definition the so0(6)-valued 2-form ¥ = dy + ¢ A ¥. In index notation
1
Vij = dyij + Yik A = ERijkl(Uk A wy.

We consider the pull-backs of ¥ and w to Q and denote them by the same symbols for the sake of brevity. The
intrinsic torsion of the SU(3)-structure measures the failing of ¥ to take values in su(3). More precisely, according to
the splitting s0(6) = su(3) @ [R]; & [R®],, we decompose i as follows

Y =0+ [ul + [l

Thus 6 is a connection 1-form on Q which in general is not torsion-free.
As before we shall regard t as a vector of 1-forms t = 1;¢;. Furthermore we can write

; =Tjjw; and p= M;w;, (3.2)
where T;; and M; are smooth functions. The fact that v is torsion-free implies

dw; = _eij NWj— €jkTk NWj — Kijib N ;. (3.3)
3.2. The curvature in index notation

In order to decompose the curvature 2-form we give the following

Lemma 3.1. These identities hold:

LAl +[uli A0 =0;

2. [t Alplt = [uhi Alr]2 =05

3.OA [t +[to A0 =[0 ATl
4. [t Alluls +uli ATl =0.

Proof. The proof is a straightforward application of e-identities (2.6). To see how things work, we prove the first one.
Since 6 takes values in su(3) we have

€pkiOrl = €rpbi = 0.
So
€ijperipb =0
forevery i, j = 1,..., 6. Then applying the e-identities (2.6) we get
0 = €ijperipbu
= (—kik8j1 + Kjibir + K18 jk — K ji18ik)Oki
= 2Kk Oki — 2kikOk;»
i.e.

KjkOki = KikOkj.
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Consequently

Oik N Krjt + Kigp A O = 0,

OAlph +nhin6=0. U

Now we can introduce the following quantities

2
D6 = df +9/\9+[T]2/\[T]2_E[Kijfi/\fj]], 3.4
Dt =dt+0 At —2[ul; AT, 3.5)
2
Du =du + §Kijti A Tj. 3.6)

With this definition D6 takes values in su(3). Moreover by Lemma 3.1 we get

¥ =d@ +[tl2 + [p]) + @ + [t + [l A O +[t]2 + []1)
= DO + [Dt]2 + [Dul:.

Using the w-frame we shall write

1
D;; = Esijklwk IR 3.7)
1
Dt = ETijka)j A Wk, (3.8)
1
Du = szla)k A wj. 3.9)

By the definition of the curvature form we have
Rijii = Sijri + €ijpTpr + kijNig.
In this notation the first Bianchi identity
UAw=0,
has the indicial expression
Sijkt + Sitjx + Siktj + €ijpTprt + €itpTpjk + €ikpTpij + kij Nkt + kit Nji + kixNijj = 0 (3.10)

Let Ric;; = Rk and s = Ricyi be respectively the Ricci tensor and the scalar curvature of (M, g). Starting from
Eq. (3.10) a long, but straightforward computation gives the following

Theorem 3.2. In the previous notation we have
RiC,’j = 2€ipgTpqj — 3kipNpj,
s = 2€rpg Tpgk — 3kkpNp.

3.3. Ricci tensor in terms of torsion forms

Denote by 7 the projection 7 : @ — M. In terms of the w-frame the pull-backs of the structure forms take their
standard expression, i.e.

1
7T*(.Q) = geijka),- Nwj N Wk,
1
a*(JN) = ggijka)i ANwj A wg,

JT*(K) = EKija)i Nwj.
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Taking into account formula (3.3) and e-identities, we immediately get

Proposition 3.3. The derivatives of the structure forms are

dn*(2) = %(—Kja/(kb + KjpKka)Th AN Wqg A wj A wg — 3 A a*(J 1),
drn*(J2) = (tj Awj) AT¥ (k) — 3 AT (02),
dr* (k) = €,j1 A or A wj.
Now we can decompose the derivatives of the structure forms: a direct computation gives the following formulae
¥ (mo) = zTii,
3
n*(m1) = €ijxTijox + ki My,

_ 2
¥ (m) = Efsraeaistrwi ANwj—2kiqTajo; ANwj + gTiin*(K),

* _2 T
7*(00) = §K’-’T’-”

1 2
¥ (o) = EersaeaijTrswi ANwj—2Tijw; Nwj + gKijTijﬂ*(K)a
n*(v1) = €k Tijox,

_ 1
a*(»3) = €aijTakwi N wj N wg + gkahTabGijkwi ANwj N wg
1 _ 1
— gTaafijkwi ANwj A wg — ETabéabinkwi ANwj N wg.
Warning: From now on we identify the torsion forms with their pull-backs to the principal SU(3)-bundle Q.
Combining the previous formulae and (3.3) we are able to prove the following (see the Appendix)

Theorem 3.4. In terms of torsion forms the scalar curvature of the metric induced by the SU(3)-structure is expressed
as
15 15 1 1 1
s = 77‘[3 + 7(73 + 2d* 7y 4 2d*vy — v * — §|02|2 - E|nz|2 — §|U3|2 + (1, v1). (3.11)

Here we collect some consequences of formula (3.11) when the SU(3)-structure has special features.
1. GCY structure. The condition 3 je = 0 reads as 71 = 0 (see Section 2.5), so that, taking into account dx = 0,

1 2 1 2
§ = §|02| §|7T2| .

2. SGCY structure. This is a special case of the previous one with the extra condition 75 = 0. The scalar curvature
takes the form

5= —1|c72|2. (3.12)
2

3. Half-flat structure. The condition dk A k = 0 reads in terms of torsion forms as v; = 0. Thus in the half-flat case
the scalar curvature takes the form
s = 5% ~ §|02| - §|V3| .
Corollary 3.5. The scalar curvature of a 6-dimensional generalized Calabi—Yau manifold is everywhere non-positive
and it vanishes identically if and only if the SU(3)-structure has no torsion.

Now we write the Ricci curvature Ric;; = 2¢;p4Tpq; — 3kipNpj in terms of the torsion forms using the operators ¢
and y defined in Section 2.3.

Theorem 3.6. If M is endowed with the SU(3)-structure («, {2) with torsion forms given by (2.8), then the traceless
part of the Ricci tensor of the induced metric is
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Rico = (" (E1(¢1)) + v~ (E2(4)), (3.13)

where
1 1
o1 = —*(V1A1V3)+Z*(7T2/\7T2)+Z*(Uz/\Oz)
1 1 1 1

+dJm + Ed*v3 + Ed*(‘jl ANK) — Zd* (mof2) + Zd*(aoﬂ),

¢ = —200v3 —4doy Avy —2Jdmy — 2%dor —4d x (v A x82) + —2d % (Jry A £2) + 29T v3
1
—2Jd*x (m A 2) —dmy AJmp +4vy Ax(Jmyp A £2) —2Jv1 Ax(vp A 2) — EQ(U3, v3),

E| and E> are the maps defined by Eqs. (2.4) and (2.5) and Q is the bilinear form Q : A?zM X A?ZM — A*M
defined by

Q(a7 13) = Gijltejteia A [E]ﬂv

where {e1, ..., es} is a unitary frame and | denotes the contraction of forms.

Remark 3.7. The formulae for the scalar curvature and for the traceless part of the Ricci tensor are justified by
representation theory. Both s and Ricy must be linear combinations of linear terms in V,(su(3)) and quadratic terms
in V1 (su(3)). For the scalar curvature the terms must take values in the Vj ¢ copies of V| and V>, while for the Ricci
curvature the terms must take values in A% and A?2 copies of Vi and V; (for Sg = /1% @ /1?2). So we have to consider:

SZ(Vl su3) =11V @ 13V 0@ 17V 1@ 12V 0@ 3V30 P 4V22 @ 9V2 1 & 2V3 .
The 11 copies of Vp o are generated by
° 7'[3, 002, 000,
® |y |2, [vq |2, (71, v1) and another bilinear expression in 1, v which does not appear in formula (3.11);
e |0|?, |m2|?, and a bilinear expression in 12, o5 which does not appear;
o [13]2.
The 17 copies of V| 1 are generated by the projections of

T2, 1002, 0002, O0TT2;

four bilinear expressions in 7r; and v; which do not appear in formula (3.13);
x11 A Jv3 and three more bilinear expressions in 1 and v3;

*(m2 A m2), *(02 A 072) and two more bilinear expressions in 75 and o7;

a bilinear form in v3.

The 12 copies of Vo are generated by the projections of

Tov3, 00V3;

vi Ax(Jmy A §2), Jvp A x(v) A £2) and another two bilinear expressions in 71, vy;
02 ANV, T2 ANV],02 NTT1,TTp NTT1;

two bilinear expressions in 07, v3 and w2, v3;

0(v3, v3).

An analogous discussion can be given for the second-order expressions after considering the splitting:

Va(su3)) =3Vo,0@4Vi,0®5Vi,1 ®3V21 ©4V20 @ V30D Vao.
4. The Ricci tensor in the GCY case

Suppose now that the pair (k, 2) gives a generalized Calabi—Yau structure on M. In this case all the torsion is
encoded by m; and o»; in fact d{2 and dJ {2 reduce to

df? = —m Ak, dJ 2 = —op N k.
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Therefore we get

0=d>Q = —dm Ak,
0=d*J2 = —doy Ak,

i.e. drp and do» are effective 3-forms. Since 7y € /léM

O0=d(m A 2) =dmy A2+ m AdS2
=dmy A —my AT AK
=dm A 2+ 7 A %113
=d7T2/\Q+|7‘[2|2*1,

i.e.

dm A 2 = —|m)? * 1.
Analogously we get

doy A T2 = —|on|? % 1.

Now we can express the Ricci tensor of a generalized Calabi—Yau manifold in terms of 7> and o5. In this case Eq.
(3.13) reduces to

. I _ _
Rico = 7t YWE (x(my A2 + 02 A 02))) — 2y “H(Ea(Jdmy + Kdon)).
Since doy is effective, ydop = —do,. Thus
1
Ricy = Zl_l(El(*(JTz ATy + 03 A 03))) — 2)/_1(E2(Jdr[2 —do)).
By the definitions of E and E3, using the J-invariance of 7 and formula (2.3), we have
1
E{(x(my A1) = x(m2 A T1p) — 5 * (o Ao + *(713 AT2) AK) A KK
1 2 1 2
= x(m A ) + §|n2| K — ) * (x(m A T) A KK
1 2 2 2
= *(m2 AT2) + <|m2|"K + < |m2| K

9 9
1 2
= *(m Am2) + §|7T2| K
and
1 1 1
E»(dm) =dn2—5*(Jd712/\/<)/\/c—Z*(dnz/\JQ)Q—i—Z*(dnz/\Q)JQ
1 1
= dmy = 2 x (dma A JH0Q — Z|n2|21!2

1 1
=dm + it (Ta Aoa AK)2 — Z|n2|2m,

where in the last step we have used
O=d(m AJD) =dm AJR+mAdJ2 =day AJ2 — 1y Aoy Ak,

In the same way we get

1
E1(x(02 A 02)) = %(02 A 02) + §|<72|2K
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and
1 1 2
E>(dop) = dop + I * (My Aoy AK)J 2+ Z|O‘2| .

Therefore, taking into account that E; commutes with J, the traceless Ricci tensor of a generalized Calabi—Yau
manifold is given by

. 1 1 B 1
Rico = ¢ Yo Aoy + 2 A2) + §(|02|2 + |m2PK) = 2y~ (Jdmy — doy + Z(IJT2|2 — o2 2).  (&.1)

Formula (4.1) implies that the metric induced by a GCY structure («, {2) is Einstein (i.e. Ricy = 0) if and only if the
torsion forms 3, o, satisfy

1
AT+ M AT+ (Il + 02Dk Ak =0

;8 (4.2)
Jdmy — doy + Z(|n2|2 — |2 =0.

In the special case of SGCY manifolds we can prove

Corollary 4.1. A 6-dimensionals SGCY manifold is Einstein if and only if it is a genuine Calabi—Yau manifold.

The proof of Corollary 4.1 relies on the following lemma which is interesting in its own right.

Lemma 4.2. Let (V, «, {2) be a 6-dimensional symplectic vector space endowed with a normalized k -positive 3-form.
If o # 0 belongs to AgV*, then a N o does not belong to the 1-dimensional SU(3)-module generated by k N k.

Proof. The key observation here is that AgV* is isomorphic as a SU(3)-representation to the adjoint representation
V1.1. Since every element in su(3) is Ad(SU(3))-conjugate to an element of a fixed Cartan subalgebra of su(3), there
exists a SU(3)-basis {el, el eﬁ} of V* such that

a =Arre'? + re* — (A + 12)e®,

for some A1, > € R. Now suppose that @ A ¢ = gk A k for some g € R. Setting to zero the three components of
o Ao — gk Ak gives the equations

A+ rr+q=0,

A+ rr+q =0,

MAz—¢qg =0,
which readily imply ¢ = 0. O

Proof of Corollary 4.1. Since in the SGCY case m = 0, taking into account Lemma 4.2, the first equation of (4.2)
can be satisfied if and only if lo2|> = 0. Therefore the Einstein condition forces (k, 2) to be a Calabi—Yau structure
onM. O

Remark 4.3. In [19] it has been proven (see Theorem 1) that a compact Einstein almost Kihler manifold with

vanishing first Chern class is actually a Kdhler—Einstein manifold. Note that our result holds with no compactness
assumption.

5. An explicit example

In this last section we carry out the computation of the Ricci tensor and the intrinsic torsion of a left-invariant
SU(3)-structure on a particular 6-dimensional nilmanifold.
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Let G be the nilpotent Lie group of the matrices of the form

1 0 x1 x3 0 O
01 x x4 0 O
A= 0 0 1 x5 0 O
00 0 1 0 O
00 0 0 1 x¢
0O 0 0 0 0 1
where x1, x2, X3, X4, X5, X are real numbers. Let I be the set of matrices in G having integral entries; then M := G/ I’
is a compact parallelizable smooth manifold. Let {X1, ..., X,} be the global frame on M given by
0 0 0
X]—a—xs—O-)qa—xS-l-xza, Xz—a—)%,
X 9 X 9 X X 9
T tT oy > o ©7 Bxa

We have that

[X1, X3] = — X, [X1, X5]=—X4
and the other brackets are zero. Let {«1, ..., ag} be the dual frame of {X, ..., X,}; then
dOll = da2 = dO[3 = dOl5 =0
doy = a5
dag = ag3.

Therefore the closed global forms
Kk = o2 + o34 + 056,
2 = o135 — a1a6 — 245 — 236

define a SGCY structure on M. Let J be the almost complex structure on M induced by the SU(3)-structure; then on
the frame {X1, ..., X¢} one has

J(X1) = Xa, J(X3) = X4, J(Xs5) = Xe.
We have

dJ 2 = d(—an6 + @235 + 0145 + @136) = A1234 — A1256 = (X34 — A56) A K,
i.e., with the notation of (2.8),

02 = 56 — 034.

Since (M, «, £2) is a SGCY manifold, o is the only non-zero torsion form.
Note that the metric associated with (k, 2) is

n
8§ = Zai ® ;.
i=1

Consequently we have |o7|?> = 2, and hence formula (3.12) implies s = —1.
Using (4.1) we can compute the Ricci tensor of g: we have

1 1
Rico = ¢! (_50”2 + gK) +y N —daizs + Q)
1 1

_ 1 _
= (—§a12 + 534 + 80156> +y 7N (=3a135 — 146 — @245 — @236).
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Let V be the Levi-Civita connection of g; then

1 1 1
ViX3 = —=Xe, ViXe = = X3, ViXe = —= X1,
143 546 146 = 543 346 541
VX—]X VX—IX VeX3 = 1X
381 = 546 631 = 543, 6A3 = —5 41
ViXs = 1X VX—IX VsX4 = 1X
145 = =544, 144 = 545, 544 =541
VX—]X VX—IX V4Xs = 1X
sA1= 544, 441 = 545, 445 = —5 41

where V; X ; stands for Vx, X ;. Now are ready to compute the torsion of this SU(3)-manifold. We immediately have

(S
w
=
|
2
=
o

and a computation gives

0 0 —ag —a5 —Q4 —Qa3
0 0 os —ag o3 —0y
I lag —os 0 0 0 2
4 | a5 073 0 0 -2 0
o4 —03 0 201 0 0
a3 ag 20 0 0 0

and
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Appendix

In this appendix we give proofs of Lemma 2.8 and Theorem 3.4.
Proof of Lemma 2.8. Let N be the Riemannian product N = M x R. Denote by

p1:N—> M,
p2:N—>R

the projections. The 3-form

o = pi() + pf) A pidp),
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defines a Gy-structure on N. From now on we identify the forms «, {2, df with their respective pull-backs to N. Let
us denote by *, and * the Hodge operator associated with the metric induced by ¢ and by the SU(3)-structure on M
respectively. Thus

do =df? +dx A dt,
1
*Ga:(*Q)/\dt+*/<:]()/\dt+§/c2,

d*g o0 =dJ 2 Adf +dk Ak,
*s do = (xdf2) A dr — xdk,
*g d*g 0 = %dJ 2 + *(dc A k) Ade.

Now we use the formula
*g 0 A *q(d*s 0) + (kg do) Ao =0, (A.1)
proved by Bryant in [9]. Now we have
1
*6 0 A ¥ (d*g 0) + (kg do) Ao = J2 A (xdJ ) Adt + 5/(2 A (x(de A k)) Adt

1
+ EICZ A*dT 2 — (xd2) A 2 Adt — (kdic) A 2 — (kdic) Ak A dt.

Therefore Eq. (A.1) implies

e (xd) A N2 = %Kz A *dJ {2, which is indeed an easy consequence of 2 Ak = 0;
o JO A (+dJ2) + 12 Ax(die A k) — (xd2) A 2 — (kdi) Ak = 0.

In order to show that Eq. (2.9) holds, we need to prove the following identity

%/X A x(di A k) = (xdk) A K. (A2)
The decomposition of 3-forms on M implies

%Kz Ax(de A k) = %KZ Ax(vp A /cz) = (k) A x(v] A /cz)
and

(xdi) Ak = (x(V] AK)) Ak,
where v| Ak € AgM ={y € A3M | %y = y}. Now we need to recall the following lemma proved in [17];
Lemma A.l. Let { € A'V* and y € A"V*; we have

K’ AY) =D Ak AY) = (=D Kk AR AKy)). (A.3)
Applying Eq. (A.3) with ¢ = *(v; Ak?) and y = 1 € A°M we have

(ki) A %] Ak2) = de(x(1 AkD)) = xJ (x(1 AkD)) = —Jvi Ak (A.4)
Moreover, since v € AgM , it follows that

*(V1 AK) Ak =—Jv] Ak (A.5)
Eq. (A.4) together with Eq. (A.5) implies (A.2), so that Eq. (2.9) is proved. [

Proof of Theorem 3.4. In order to prove formula (3.11) it is useful to introduce the 1-forms S;jrwi, Vigwi, defined
by the relations

dTij = Tixbrj + TkjOki + Sijkwk,

dM; = M6k + Virwk.
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Using Egs. (3.5) and (3.6) and the definition of T;;, M; given in (3.2)
Dt = dT,'j ANwj+ Tijda)j — ZKij/L ATj
= (Siva — TijTga€jpg — TijkjpMa — 2kij M Tjp)wa N wp,

and

2
Du = dM, AN o, + M, dw, + §K"jfi AT

= (Vba — MyerpgTya — Mrirpy My + %KijTiaij) Wq N\ Wp.

Therefore, taking into account (3.8) and (3.9), we obtain

Tiap = 2(Siva — TijTga€jbg — TijkjpMa — 2kij Mo Tjp),

Ngp =2 (Vba — My€rpgTya — Mykrp My + %Kij Tiaij) .
It follows that

€ipg Tpgj = 2(€ipqSpiq — €ipg€rjsTprTsq — €ipq TpricrjMq + 2€iq, TrjMy),

KipNpj =2 <’<ip Vip = Kip€rjqTapMyr — Kipkerj My M + %"ip"quqPTrj)
and using the e-identities (2.6)

€ipgTpgi = 2(—€ipgSipg — €ipg€risTprTsq — %prq Tpr My + 2€47i Tri Mg)
= 2(—€ipqSipq - EiqurisTprqu + €prq TPVMq)’

2
K,'pr,' =2 K,'pV,'p - K,'pér,'qquMr - K,'pK”'MrMp + gKiqurquTri

_ 2 2
= 2 kipVip + ErgpTgpMr + SriprgrTypTri + > M.
i

Then by Theorem 3.2 we get

1145

_ _ 2
§ = 4(_6ipqSipq - EiqurisTprqu + fpqupqu) -6 (Kipvip + 6rquqp]Wr + gKiqurquTri + ZM12>
i

= —4€ipgSipg — A€ipg€ris TprTsg — 26 prg Tpr My — 6kip Vip — dcipkyr TypTri — 6 Y M.
i

Furthermore a straightforward computation gives the following formulae
4

w5 = §TiiTjj,
2 _
oy = §KinsrTistra
4
|772|2 = _gTiiTjj +4Ti§ - 26sra€aistrTij ‘|’4Kir/(jsTistrs

4
|021* = —2€5ra€aij Tsr Tij — 3KiikabTijTap — 4T;; T +4> T3,
ij
[vi1? = €ijk€kanTij Tabs
vs]? = 27}? + 275 Tji — 2xjrkisTijTrs — 2kirk jsTij Trs,
d*my = —€sra€aij Tsr Tij +4EijkTiij — €sraSsra — 3KijVij - 3ZM12’
;
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N _
d*v; = _esraeaijTSrTij + Gijle‘ij — €sraSsra;
(1, v1) = €apierijTanTij — 3€ijx Tij M.

Therefore we get

15 15 1 1 1
76 + 00 +20"m + 241 = P = ZJoa = il = Sl + dfr o)
= 4T;;Tjj + dkijicsy Tij T — 5 Z Tij + €sra€aij Tor Tij + T Tji — 2€;T;j My
ij
2
— 6k Vij — 6ZM,- + (=Kiakjb + Kivk ja) Tij Tha — 4€ijiSijk
i

= 4eipgSipg — H€ipgris Tpr Tog — 2€ prg Tpr My — 6kip Vip — 4cipkyr TypTri — 6 Y M7,
i

i.e.

15 15 1 1 1
s=7ﬁ+7ﬁ+ww+mm—w#—;mﬁiwﬁ—;m%4m»m

and the theorem is proved. [
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